
​BILINFO CASE PLUGIN​
​Third party integration document​

​Abstract​
​Bilinfo Case Plugin enables Dealers to manage financing and insurance offers on behalf of the​
​Customer within Bilinfo.nets “Sager” system. This document describes the prerequisites and​

​details for building a Case Plugin integration into Bilinfo.​

​BilInfo​
​bilinfo@bilinfo.dk​

mailto:bilinfo@bilinfo.dk


​Version history​
​Version​ ​Date​ ​Authors​ ​Comments​
​0.1.0​ ​12/12/2016​ ​Cosmin Constantin Lazar​

​Kim Jørgensen​
​First draft version​

​0.1.2​ ​09/01/2017​ ​Lisbeth Storgaard​ ​Added case flow​
​0.1.3​ ​16/01/2017​ ​Cosmin Lazar​ ​Use test client in OpenID examples​
​0.1.4​ ​27/02/2017​ ​Ole Munk Lauritsen​ ​Updated input models​
​0.1.5​ ​28/02/2017​ ​Ole Munk Lauritsen​ ​Updated input models​
​0.1.6​ ​14/03/2017​ ​Cosmin Constantin Lazar​ ​Describe application status reporting api,​

​brands and products api, Oauth2 appendix,​
​update plugin messages​

​0.1.7​ ​16/03/2017​ ​Ole Munk Lauritsen​ ​Added deliveryCost, licensePlate and color to​
​Car model​

​0.1.8​ ​24/03/2017​ ​Cosmin Constantin Lazar​ ​Add phone to PrivateCustomer, CoApplicant,​
​and BusinessCustomer​

​0.1.9​ ​27/03/2017​ ​Cosmin Constantin Lazar​ ​Add​​vin​​and​​kmWarranty​​to Car​
​0.1.10​ ​10/04/2017​ ​Cosmin Constantin Lazar​ ​Add description of finance specification​

​message​
​0.1.11​ ​25/04/2017​ ​Cosmin Constantin Lazar​ ​Add description for Finance Offer on​

​Marketplaces​
​0.1.12​ ​23/05/2017​ ​Cosmin Constantin Lazar​ ​Add api description for accessing the sales​

​contract​
​0.1.13​ ​08/06/2017​ ​Cosmin Constantin Lazar​ ​Add specification for​​discount​​and​

​discountVat​
​0.1.14​ ​10/07/2017​ ​Cosmin Constantin Lazar​ ​Add specification for​

​driverLicenseNumber​​,​
​timingBeltReplaced​​, and​​serviceBook​

​0.1.15​ ​14/07/2017​ ​Cosmin Constantin Lazar​ ​Add specification for​​decisionMaker​
​and​​businessUser1​

​0.1.16​ ​27/07/2017​ ​Cosmin Constantin Lazar​ ​Add interaction diagrams and restructure sub-​
​chapters​

​0.1.17​ ​28/07/2017​ ​Cosmin Constantin Lazar​ ​Update disclaimer and remove watermark​
​0.1.18​ ​05/09/2017​ ​Cosmin Constantin Lazar​ ​Update QA base path for Bilinfo service​
​0.1.19​ ​06/09/2017​ ​Cosmin Constantin Lazar​ ​Specify verb and format for Calculation Matrix​
​0.1.20​ ​06/09/2017​ ​Cosmin Constantin Lazar​ ​Rename ‘case.data’ message to ‘data.case’​
​0.1.21​ ​06/09/2017​ ​Cosmin Constantin Lazar​ ​Add​​toldAndSkatVariant​​to car data​
​1.22.0​ ​06/09/2017​ ​Cosmin Constantin Lazar​ ​Add code field to dealer mounted extra​

​equipment.​
​1.22.1​ ​15/09/2017​ ​Cosmin Constantin Lazar​ ​Remove companyName and carPrice from​

​Matrix calculation input​
​1.23.0​ ​21/09/2017​ ​Cosmin Constantin Lazar​ ​Add​​taxableAmount​​to car sales price​
​1.24.0​ ​01/11/2017​ ​Jacob Emborg Sønderskov​

​Lisbeth Storgaard​
​Reworked document structure​

​1​



​1.25.0​ ​07/11/2017​ ​Jacob Emborg Sønderskov​ ​Added​​ownerTaxPerYear​​to Car data​
​2.0.0​ ​15/11/2017​ ​Henrik Thomsen​ ​Changed​​finance.update​​to​​case.update​
​2.1.0​ ​24/11/2017​ ​Henrik Thomsen​ ​Changed get brands and products to include​

​services provided​
​2.1.1​ ​29/11/2017​ ​Henrik Thomsen​ ​Changed this document from only supporting​

​finance, to being a finance and insurance​
​document (text change)​

​2.1.2​ ​29/11/2017​ ​Henrik Thomsen​ ​Add​​modelCatalogueId​​to Car​
​2.2.0​ ​29/11/2017​ ​Henrik Thomsen​ ​Changed Bilinfo Services​
​2.2.1​ ​30/11/2017​ ​Lisbeth Storgaard​ ​Updated user journey​
​2.2.2​ ​8/1/2018​ ​Jacob Emborg Sønderskov​ ​Move FOOP into Plugin Server-Side as optional​

​step.​
​2.2.3​ ​17/1/2018​ ​Jacob Emborg Sønderskov​ ​Added description to​​downPayment​​being​

​with VAT.​
​2.2.4​ ​24/1/2018​ ​Jacob Emborg Sønderskov​ ​Add Versioning and Deprecation Policy chapter​
​2.2.5​ ​31/01/2018​ ​Henrik Thomsen​ ​Added 4 extra Cartypes​
​2.2.6​ ​13/02/2018​ ​Jacob Emborg Sønderskov​ ​Update Disclaimer and Versioning and​

​Deprecation chapters.​
​2.2.7​ ​07/03/2018​ ​Henrik Thomsen​ ​Disallow multiple servicetypes in the same​

​brand​
​2.2.8​ ​12/04/2018​ ​Jacob Emborg Sønderskov​ ​Change​​logoUrl​​to 133x35​
​2.2.9​ ​12/04/2018​ ​Jacob Emborg Sønderskov​ ​Add “Migrating from Case Plugin Architecture​

​v1 to v2” chapter​
​2.2.10​ ​25/04/2018​ ​Jacob Emborg Sønderskov​ ​Add​​timingBeltReplacedAtMileage​​and​

​timingBeltReplacedAtDate​​in TradeInCar​
​type.​

​2.2.11​ ​04/05/2018​ ​Jacob Emborg Sønderskov​ ​Add​​companyLogoUrl​​field to calculation​
​matrix endpoint.​

​2.2.12​ ​18/05/2018​ ​Jacob Emborg Sønderskov​ ​Amended Versioning and Deprecation Policy​
​chapter​

​2.2.13​ ​31/05/2018​ ​Dianna Kristensen​ ​Add​​effect​​field to Car​
​2.3.0​ ​31/05/2018​ ​Dianna Kristensen​ ​Change QA urls from QA1 to QA01 ahead of​

​fall 2018 update. NB: Will not impact​
​production.​

​2.3.1​ ​31/05/2018​ ​Jacob Emborg Sønderskov​ ​Add change policy associated with GDPR to​
​Versioning and Deprecation Policy chapter​

​2.3.2​ ​20/06/2018​ ​Lisbeth Storgaard​
​Jacob Emborg Sønderskov​

​Add Finance Offer on Platforms user journey​

​2.3.3​ ​14/08/2018​ ​Jacob Emborg Sønderskov​ ​Add Unknown value to the FuelType enum​
​2.3.4​ ​07/09/2018​ ​Jacob Emborg Sønderskov​ ​Add Content-Security-Policy and X-FRAME-​

​OPTIONS recommendations​

​2​



​2.4.0​ ​10/09/2018​ ​Jacob Emborg Sønderskov​ ​Split User Journeys, Finance Offer On​
​Platforms, Bilinfo Shared Services and Bilinfo​
​Auth Services into separate documents​

​2.5.0​ ​07/11/2018​ ​Jacob Emborg Sønderskov​ ​Add CashPriceInclVat Case Specification​
​Message (Car)​

​2.6.0​ ​12/11/2018​ ​Henrik Thomsen​ ​Add new fields to Car​
​2.7.0​ ​12/12/2018​ ​Jacob Emborg Sønderskov​ ​Add extended service book field,​

​ServiceBookEnum to Car and TradeInCar​
​2.7.1​ ​29/03/2019​ ​Lars Tabro Sørensen​ ​Add PreApproved status to StatusApi states​
​3.0.0​ ​17/12/2025​ ​Wojciech Janas​ ​Rework of business users structure – a new​

​BusinessUsers object is now related​
​with the Case object, not Customer​

​3​



​Contents​
​Version history​ ​1​

​A.​ ​Disclaimer​ ​5​

​B.​ ​Versioning and Deprecation Policy​ ​6​

​C.​ ​Migrating from Case Plugin Architecture v1 to v2​ ​8​

​D.​ ​Migrating from Case Plugin Architecture v2 to v3​ ​8​

​1.​ ​Introduction​ ​9​

​Purpose and Scope​ ​9​

​References​ ​9​

​Definitions and acronyms​ ​10​

​2.​ ​System overview​ ​11​

​System context​ ​11​

​System introduction​ ​13​

​3.​ ​Prerequisites​ ​15​

​Security​ ​15​

​Separate environments​ ​15​

​Onboarding​ ​15​

​4.​ ​Plugin Server-Side​ ​16​

​Brands & Products API​ ​16​

​5.​ ​Plugin Client-Side​ ​18​

​Security​ ​18​

​Handling the​​reference​ ​21​

​User Interface​ ​21​

​Messaging​ ​22​

​Security​ ​23​

​Handshake​ ​25​

​Data exchange interaction​ ​28​

​Save interaction​ ​4​​2​

​Application interaction​ ​4​​4​

​Other Messages​ ​4​​5​

​6.​ ​Host Server-Side Services​ ​4​​6​

​Application Status API​ ​4​​6​

​4​



​A.​​Disclaimer​
​Information presented here might be altered by the Bilinfo team from time to time. Inconsistencies across the​
​document are to be expected and they will be addressed in updates.​

​Any update will be specified in​​Version history.​

​GDPR compliance​
​Note, that the Plugin produced using this document may be subject to review by Bilinfo before it will be made​
​available via Bilinfo.net to ensure proper security measures have been employed.​

​Data and system integrity​
​Abuse of the system is forbidden in any regard. If you find a security issue or exploitation outside the original​
​intent of the system, you are expected to report the exploit or bug to the Bilinfo team.​

​5​



​B.​ ​Versioning and Deprecation Policy​
​Versioning in Bilinfo Services is essential to achieving our vision behind Partner integrations in Bilinfo. Using the​
​versioning principles described below will allow for your Bilinfo integrations to remain stable and fully​
​functional as the Bilinfo business continues to evolve and mature.​

​New Versions of the Bilinfo Services​
​The versioning principles employed in Bilinfo Services largely follow that of the​​Semantic Versioning​
​Specification​​[1]​​. The Semantic Versioning Specification,​​in short, specifies a version increment based on the​
​backwards compatibility of the API or Web Service. A summary of the specification can be seen in the following​
​Listing B-1:​

​Given a version number​​MAJOR​​.​​MINOR​​.​​PATCH​​, increment​​the:​

​·​ ​MAJOR​​version when you make incompatible API changes,​
​·​ ​MINOR​​version when you add functionality in a backwards-compatible​​manner, and​
​·​ ​PATCH​​version when you make backwards-compatible bug​​fixes.​

​Additional labels for pre-release and build metadata are available as extensions to the​
​MAJOR​​.​​MINOR​​.​​PATCH​​format.​

​Listing B-1: Semantic Versioning Specification 2.0.0 summary​

​The types of changes that are minor version changes and backward compatible are:​

​●​ ​Adding a new method (​​GET​​,​​POST​​etc.) to an API​
​●​ ​Adding a new property to the method response payload​
​●​ ​Adding a new​​non-personal data​​[2]​ ​property to an​​iframe​​communication​

​The types of changes that are major version changes and not backward compatible are:​

​●​ ​Removing existing method (​​GET​​,​​POST​​etc.) from an​​API​
​●​ ​Renaming existing method path​
​●​ ​Changing request body or query string for existing method​
​●​ ​Changing method response structure and/or property names​
​●​ ​Removing a property from an​​iframe​​communication​
​●​ ​Renaming a property from an​​iframe​​communication​
​●​ ​Renaming a message in an​​iframe​​communication​
​●​ ​Adding a new​​personal data​​[2]​ ​property to an​​iframe​​communication​

​1​ ​https://semver.org​
​2​ ​Personal data as defined in Regulation (EU) 2016/679​​of 27 April 2016 (GDPR) and the Danish Data Protection Act.​

​6​

https://semver.org/


​In general, new major versions of Bilinfo Services will only be introduced, when existing interfaces do not allow​
​for further evolution and improving of our Partner integrations without modification. Due to the need for​
​Partner action, major versions are used as a last resort and are as such very rare. Minor version updates will​
​require no Partner action.​

​Updating your Bilinfo integration​
​Updating your Bilinfo integration to support a new major version is non-optional as the existing integration​
​paradigm is fundamentally changed. It is as such not possible to opt out without risking major problems with​
​your Bilinfo integration. Minor versions, however, are fully optional, but may contain new fields, which may​
​enrich the experience and value of your Bilinfo integration.​

​To assist Partners in upgrading their Bilinfo integration with minimal efforts, each major version will be​
​associated with​​migration chapters​​added to this document.​​Minor version changes are specified primarily in​
​the Version History and are subject to the reader to adhere to the changes.​

​Deprecation Policy and Supported Versions​
​Bilinfo Services will support older versions for a grace period appropriate to the contractual obligations. After​
​that time, integrations based on older versions may no longer work or experience severe operational issues.​

​7​



​C.​ ​Migrating from Case Plugin Architecture v1 to v2​
​The following guide describes the main changes going from version 1 to version 2 of the Case Plugin​
​Architecture and how to migrate your version 1 Case Plugin to work in the new architecture.​

​Keep in mind that the Case Plugin Architecture is a dynamic solution, which – based on our Partners need – will​
​be updated continuously with new fields and data from Bilinfo.net, but rarely require specific Partner actions.​

​Version 2 of the Case Plugin Architecture enables the inclusion of additional services in your Case Plugin​
​integration which previously has been focused on Financing, i.e. Loan and Leasing. With version 2 it is possible​
​to define the​​delivered service​​, such as loan, leasing,​​insurance and – in time – more, that the Partner enables​
​the dealer and end customer to consume via the Bilinfo.net platform.​

​Major version changes for version 2 are found in:​

​●​ ​Brands & Products API​
​o​ ​Add delivered services to Product. See Bilinfo Brands and Products (Integration)​​document​

​and more specifically the Product​​type.​

​●​ ​Application Status​
​o​ ​Change in reporting scheme to a dictionary of delivered services. See the​​Request​​section.​

​●​ ​Plugin Client-Side​
​o​ ​Change name of​​finance.update​​message to​​case.update​​.​​See​​Data exchange​

​interaction​​section​​.​
​o​ ​Change version from "1.x.x" to "2.x.x.” for all application messages. See​​Messaging​​and more​

​specifically​​Header​​.​

​Additional minor version changes for version 2 can be found in:​

​●​ ​Plugin Client-Side​
​o​ ​Addition of​​modelCatalogueId​​to​​Car​​type. This requires​​access to Bilinfo’s​​ModelCatalogue​

​service​​which is outside the scope of this document.​
​o​ ​Addition of new types to​​CarType​​type.​

​D.​ ​Migrating from Case Plugin Architecture v2 to v3​
​Major version changes for version 3 are found in the​​Case specification message​​.​

​Change version from "2.x.x" to "3.x.x.” for all application messages. See​​Messaging​​and more specifically​​Header​​.​

​A new field​​businessUsers​​was added to the message,​​which reflects the change in objects relation – a business user​
​(“Bruger”) is related with the case, not with the customer. It has been therefore removed from the​​customer​​object,​
​and now will contain both business users (“Bruger 1” & “Bruger 2”).​

​The field​​businessUsers​​will remain​​null​​for private​​customers.​

​8​



​1.​ ​Introduction​
​Purpose and Scope​

​This document describes the technical solution for building a Case Plugin integration into Bilinfo.net via the​
​Case Plugin Architecture.​

​For Finance Offer On Platforms please refer to the Bilinfo Finance Offer On Platforms (integration)​​document.​

​References​
​Documents relevant to the reading of this document are listed here. Links and other external resources​
​accessible via the internet are referenced via footnotes relative to the term or technology. You should have​
​access to every document mentioned in this list. If that is not the case, contact Bilinfo.​

​Table 1-1: Document references​

​Document name​ ​Description​
​Bilinfo Case Plugin​
​(Integration)​

​Bilinfo Case Plugin enables Dealers to manage financing and insurance offers​
​on behalf of the Customer within Bilinfo.nets “Sager” system. This document​
​describes the prerequisites and details for building a Case Plugin integration​
​into Bilinfo.​

​Bilinfo Case Plugin​
​(User journey)​

​Bilinfo Case Plugin enables Dealers to manage financing and insurance offers​
​on behalf of the Customer within Bilinfo.nets “Sager” system. This document​
​describes the User Journey of the product result of a Bilinfo Case Plugin​
​integration.​

​Bilinfo Auth Services​
​(Integration)​

​Bilinfo Auth Services encompass Single-Sign On and OAuth 2.0 mechanisms​
​that must be used when integrating Bilinfo. This document describes the​
​prerequisites and details of integrating into Bilinfo Auth Services.​

​Bilinfo Shared Services​
​(Integration)​

​Bilinfo Shared Services encompass Dealer Lookup and User Lookup Services​
​that may be used in building a Bilinfo integration. This document describes​
​the prerequisites and details of integrating into Bilinfo Shared Services.​

​Bilinfo Brands and Products​
​(Integration)​

​Brands and Products are a required element of both a Case Plugin and​
​Finance Offer On Platforms integration. This document describes the​
​prerequisites and details for building a Brands and Products API for​
​integrating into Bilinfo.​

​Bilinfo Finance Offer On​
​Platforms (User journey)​

​Bilinfo Finance Offer On Platforms enables Dealers to select Finance Offers​
​for Cars to be shown on Bilbasen, DBA and Dealer CMS sites. This document​
​describes the User Journey of the product result of a Bilinfo Finance Offer​
​On Platforms integration.​

​Bilinfo Finance Offer On​
​Platforms (Integration)​

​Bilinfo Finance Offer On Platforms enables Dealers to select Finance Offers​
​for Cars to be shown on Bilbasen, DBA and Dealer CMS sites. This document​
​describes the prerequisites and details for building a Finance Offer On​
​Platforms integration into Bilinfo.​

​9​



​Definitions and acronyms​
​The definitions and acronyms defined in​​Table 1-2​​cover frequently used concepts, terms and acronyms used​
​throughout this document. It is suggested that the reader acquaints him- or herself with the key concepts and​
​refer to this list, when in doubt.​

​Table 1-2: Definitions and acronyms​

​Term/acronym​ ​Definition​
​Bilinfo Services​ ​Includes – but not limited to – Bilinfo Auth Services, Bilinfo Shared Services,​

​Bilinfo Finance Offer On Platform integrations and Bilinfo Case Plugin​
​integrations.​

​Partner​ ​Synonym for the integrating party.​
​Case Plugin Architecture​ ​System enabling the integration of external third party Case Plugins in the​

​Bilinfo.net context.​
​Bilinfo Shared Services​ ​Aggregate term for API and Data Services provided by Bilinfo to external​

​Partners and integrations.​
​FOOP​ ​Acronym for Finance Offer On Platforms.​
​Finance Offer On Platforms​ ​Feature which enables displaying Finance Offers on Bilbasen through​

​Bilinfo.​
​Platforms​ ​Shorthand of the platforms with support for FOOP, i.e. DBA, Bilbasen and​

​CMS services.​
​Plugin (server-side/client-side)​ ​Third party system developed for viewing within the context of Bilinfo.​

​Consists of a server-side and a client-side, respectively referred to as a​
​Plugin server-side​​and​​Plugin client-side​​.​

​SSO​ ​Single Sign-On. Authentication protocol employed by Bilinfo Host. Must be​
​adhered to by the Plugin.​

​Case​ ​A Case in Bilinfo consists minimum of a Customer and a car, but can also​
​include extra equipment and have a trade-in car added. On each case you​
​also find a calculation of the car price. The case is the collection of data​
​involved in selling a car in Bilinfo.​

​Brand​ ​Name of partner or an OEM brand.​
​Product​ ​Campaigns, loan-, leasing-, and insurance products, bundled or All inclusive​

​products.​
​Plugin Implementer​ ​A Finance or Insurance company or any other partner that is implementing​

​a plugin for Bilinfo.net.​

​10​



​2.​ ​System overview​
​The following chapter will introduce the Plugin context and the main actors within the Case Plugin Architecture​
​with the intent of aiding the reader in understanding the implementation specifics to come in the subsequent​
​chapters.​

​System context​
​A​​Case Plugin​​(or simply a​​Plugin​​) is an extension​​point of Bilinfo.net that allows third parties to seamlessly​
​integrate new functionality. The interaction between the​​Host​​(Bilinfo.net) and the​​Plugin​​(third party),​​as seen​
​in​​Figure 2-1,​​is designed to offer the best experience​​to the end-user via real-time updates and ease of use.​

​Figure 2-1: Case Plugin Architecture context diagram​

​There are several actors that tie together to make the integration work. These are largely split into Client-Side​
​and Server-Side components within different contexts as seen in​​Figure 2-1.​​Note that the dotted boxes​​and​
​interactions, seen in the​​Figure 2-1​​context diagram,​​concern communications outside of the scope of this​
​document as this involves the internal processing done by the integrating party.​

​11​



​2.1.1​ ​Plugin Server-Side​
​The​​Plugin Server-Side​​represents a set of services​​needed by the​​Host Server-Side​​in order to load the​​proper​
​third party​​Plugin Client-Side​​for a specific integration​​need. By querying said services, Bilinfo.net will be able to​
​easily integrate different Brands and Products into the Case Plugin context.​

​2.1.2​ ​Plugin Backend Service​
​The​​Plugin Backend​​has a number of functions within​​the Plugin context, but is otherwise undefined in terms of​
​its implementation as it is outside the scope of this document. The functions the​​Plugin Backend​​must serve​​is:​

​1.​ ​Provide the JavaScript, CSS and HTML files constituting the​​Plugin Client-Side.​
​2.​ ​Handle internal processing of an Application based on business needs.​
​3.​ ​Report status updates to the​​Host Server-Side​

​Note, the Plugin Web Server and Plugin Server-Side are intentionally split into two distinct parts, but may exist​
​within the same deployment-wise context as shown by the “Partner Server-Side” grouping in​​Figure 2-1​​.​

​2.1.3​ ​Plugin Client-Side​
​The​​Plugin Client-Side​​represents the UI with which​​the Dealer interacts when preparing an Application for a​
​specific Brand and Product. It communicates both with Bilinfo via the​​Host Client-Side​​and the​​Plugin​
​Implementer​​’s backend via the​​Plugin Backend.​​Once​​an Application is ready for processing it is sent directly to​
​the​​Plugin Backend,​​processed internally by the​​Plugin​​Implementer​​with an Application Status being forwarded​
​to the​​Host Server-Side,​​and ultimately updated within​​the​​Plugin Client-Side​​via a message from the​​Host​
​Client-Side.​

​2.1.4​ ​Host Server-Side​
​The​​Host Server-Side​​constitutes a set of services​​used by the Plugin Server-Side and Plugin Web Server. The​
​available services are described in further detail in Chapter​​6​​.​

​In addition to providing services and API’s it also serves up the Host Client-Side.​

​2.1.5​ ​Host Client-Side​
​The​ ​Host​​Client-Side​ ​constitutes​​the​​Bilinfo.net​​Case​​Plugin​​Architecture,​​which​​loads​​the​​Plugin​​Client-Side​​into​
​an​​iframe​​from​​an​​URL​​provided​​by​​the​​Plugin​​Server-Side.​​The​​resource​​pointed​​to​​the​​URL​​is​​not​​(necessarily)​
​served up by the Partner Server-Side, but is rather served by a​​Plugin Backend.​

​Additionally,​​the​​Host​​Client-Side​​negotiates​​the​​communication​​protocol​​to​​be​​used​​between​​it​​and​​the​​Plugin​
​Client-Side.​​The​​communication​​specifics​​regarding​​the​ ​handshake​ ​and​​client-side​​communication​​is​​described​
​in further detail in Chapter​​5.​

​2.1.6​ ​Bilinfo Shared Services​
​The​​Bilinfo Shared Services​​are described in the​​Bilinfo​​Shared Services​​document. See​​1.2​​References​​.​

​12​



​System introduction​
​The Plugin is hosted within the Bilinfo.net Case feature as seen in​​Figure 2-2.​​The plugins therefore become​​an​
​extension of the Case with bi-directional data exchange capabilities with Bilinfo.net.​

​Additional information regarding the flow and user interactions can be found in the​​Bilinfo Case Plugin​​(User​
​journey)​​document. See​​1.2​​References​​.​

​Figure 2-2: Case plugin​

​13​



​The system is intended to support entry of Finance and Insurance details pertaining to the specific Application​
​(Brand and Product) the Dealer has selected and work within the confines of Bilinfo.net. As such, any necessary​
​information needed by the​​Plugin Implementer,​​must​​be defined and communicated conforming to internal​
​information requirements.​

​It​​is​​recommended​​that​​the​​implementing​​party​​incorporates​​a​​user​​experience​​similar​​to​​that​​of​​Bilinfo.net​​in​
​general.​​However,​​understandably,​​the​​visual​​feel​​in​​terms​​of​​applied​​color​​scheme​​may​​be​​different​​to​​that​​of​
​Bilinfo.net to better indicate the​​Plugin Implementer​​with which the Application is made.​

​14​



​3.​ ​Prerequisites​
​This chapter describes the preliminary information and tasks you should get under way before starting any​
​development on the Plugin Server-Side and the Plugin as a whole. These tasks are dependent on external​
​parties and may take some time to complete.​

​Security​
​All Bilinfo Shared Services use SSL/TLS (HTTPS) and OAuth 2.0 for Authorization. Additionally, the Case Plugin​
​must authenticate itself with Bilinfo.net via Single Sign-On.​

​Separate environments​
​Two instances of the​​Plugin Server-Side​​should be​​available, one for Production and one for QA.​

​Onboarding​
​The integrating party must contact Bilinfo.net to start the​​onboarding process​​. In onboarding, infrastructural​
​information pertaining to the integration is exchanged.​

​For the Case Plugin integration a number of elements have to be aligned. The onboarding activities include:​

​●​ ​Registration of SSO and OAuth 2.0 integrations covered in the Bilinfo Auth Services (Integration)​
​document.​

​●​ ​Exchange URI’s and paths for Partner​​Brands & Products​​API​​in Bilinfo.net​
​●​ ​Retrieve​​plugin_implementer_identifier​​URI for​​Application​​Status API​​callback​

​15​



​4.​ ​Plugin Server-Side​
​This chapter will cover the​​Plugin Server-Side​​components​​that must be implemented in order to enable​
​integration of a third party Plugin into Bilinfo.net.​

​Brands & Products API​
​The​​Brands & Products API​​is the primary component​​of the​​Plugin Server-Side​​and assists the Bilinfo.net​​site in​
​loading the Plugin correctly. The API is used to present the User with a list of Brands and Products he can use to​
​finance or insure the current vehicle on the Case. Once the User chooses a Brand and Product combination, a​
​Plugin URL​​is used to load the​​Plugin Client-Side​​within an​​iframe​​.​

​The initial create new offer interaction described above can be seen in​​Figure 4-1​​. Once created Bilinfo.net​
​saves the Plugin URL of the offer and will reuse it for future reloads of it. This subsequent load can be seen in​
​Figure 4-2.​

​Figure 4-1: Create new offer interaction​

​16​



​Figure 4-2: Load existing offer interaction​

​Note, that in both​​Figure 4-1​​and​​Figure 4-2​​a Single​​Sign-On (SSO) is negotiated with the Bilinfo Authentication​
​Server. This step is described in further detail in chapter​​5​​.​

​Further information regarding the Brands & Products specification can be found in the Bilinfo Brands and​
​Products (Integration) found in​​1.2​​References​​.​

​17​



​5.​ ​Plugin Client-Side​
​The​​Plugin Client-Side​​refers to the web-based User​​Interface (UI) produced by the HTML, JavaScript and CSS​
​elements provided by the​​Plugin Backend.​​It is displayed​​on the Bilinfo.net site via an iframe.​

​Figure 5-1: Case Plugin​

​This chapter covers the interactions available to the Plugin Client-Side within the​​Host Client-Side​​context. Each​
​section found in this chapter pertains to a portion of the implementation needed to interact with Bilinfo. Any​
​interaction with the​​Plugin Backend​​is out of scope​​of this document.​

​Security​
​Before the Plugin is shown to the user, the Plugin must negotiate Single Sign-On with the Bilinfo Authentication​
​Server. The Plugin must not prompt the user for signing in, it should instead trust Bilinfo to confirm the logged​
​user identity. The user identity is established using the OpenID Connect protocol. Therefore, upon starting up,​
​the Plugin should only grant a session after it has successfully established the user identity.​

​18​



​Figure 5-2​​shows how the authentication using SSO​​specified in Bilinfo Auth Services (Integration)​​document​​is​
​performed within the context of Bilinfo. Out of the box, the Bilinfo Authentication Service supports​
​Authorization Code and Implicit flow. The Plugin developer can choose the flow it desires to implement;​
​however, since it offers a higher degree of protection, Authorization Code is preferred.​

​Figure 5-2: Single Sign-On Authorization Code flow​

​Explaining the OpenID Connect protocol is outside the bounds of this document. However, meaningful​
​information about the supported flows and test credentials may be found in the Bilinfo Auth Services​
​(Integration)​​document.​

​The protocol revolves around a third party obtaining an​​id_token​​and optionally an​​access_token​​. The​
​id_token​​is a self-standing JSON Web Token describing​​the identity of a user (claims). Furthermore, the​
​access_token​​can be used later on to obtain more detailed​​information about the user.​

​The​​id_token​​will contain claims about the current​​user in accordance with the scopes requested by the​
​client.​​Table 5-1​​shows a list of accessible scopes​​along with their associated claims.​

​19​



​Table 5-1: id_token claims​

​Scope​ ​Claims​ ​Included in​
​id_token​

​Description​

​openid​ ​sub​ ​yes​ ​User identifier (e.g.:​​clazar@ebay.com)​
​profile​ ​name​ ​yes​ ​User full name (e.g.: Cosmin Constantin Lazar)​

​userId​ ​yes​ ​User id in Bilinfo.net (e.g.: 1253)​
​dealer​ ​dealerId​ ​yes​ ​Dealer Id in Bilinfo.net (e.g.: 42304136-FDCA-DF11-​

​9E98-0025B3E6B7D8)​
​bilinfoDealerId​ ​yes​ ​Dealer Id in Bilinfo Program (e.g.: 100)​

​email​ ​email​ ​yes​ ​User email (e.g.:​​clazar@ebay.com)​

​Communication with the Bilinfo Authentication and Authorization Server, Bilinfo Shared Services, or between​
​the Plugin and its server-side counterparts shall always take place over a secure connection (TLS).​

​Please note that most programming languages have libraries that you can use to access and validate tokens. A​
​non-exhaustive list of libraries for various programming languages may be found at the OpenID Connect​
​developers site​​3​​. Furthermore, if the library supports​​automatic configuration, you can use the OpenID​
​configuration endpoint​​https://www.bilinfo.net/oauth/.well-known/openid-configuration.​

​5.1.1​ ​Content Security Policy (CSP)​
​The Plugin Client-Side is loaded within an iframe context. A Content-Security-Policy (CSP) header is set up in​
​Bilinfo.net, which will reject all non-https communication. As such, HTTPS is mandatory when providing Case​
​Plugin static files and API calls.​

​It is strongly recommended that the Case Plugin uses CSP headers in turn to best protect their iframe solution​
​from being used in unexpected ways.​

​The Content-Security-Policy​​frame-ancestors​​4​ ​directive​​may be used to assert access only from​

​●​ ​https://www.bilinfo.net​
​●​ ​https://www.qa01.bilinfo.net​

​5.1.2​ ​X-Frame-Options​
​Given that the Content-Security-Policy header is primarily supported in modern versions of major browsers, we​
​recommend also using the​​X-Frame-Options​​5​ ​header to​​enable controlling requests on older browsers.​

​3​ ​http://openid.net/developers/libraries/​
​4​ ​https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors​
​5​ ​https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options​

​20​

mailto:clazar@ebay.com
mailto:clazar@ebay.com
https://www.bilinfo.net/oauth/.well-known/openid-configuration
https://www.bilinfo.net/
https://www.qa01.bilinfo.net/
http://openid.net/developers/libraries/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options


​Again, allow access from​

​●​ ​https://www.bilinfo.net​
​●​ ​https://www.qa01.bilinfo.net​

​Please avoid using the meta tag when applying this, but rather put it in the HTTP response header.​

​Handling the​​reference​
​When loading the Plugin, the Host will generate a unique identifier and pass it to the Plugin by appending a​
​“​​reference​​” query string parameter to the plugin load​​URL, e.g.​
​https://example.com/plugin?reference=1234abcd).​

​The Plugin should save the provided reference and supply it in the header section of all the messages it sends​
​to the Host. The Host will also supply the plugin reference in the header of all the messages it sends. It is​
​recommended – though not necessary – that the client validates against it. How the reference is passed to the​
​Host is described in further detail in the​​Messaging​​section.​

​The Host will reuse the reference on each subsequent re-initialization of the Plugin. This means that the​
​identifier may be used for saving or reloading instance-specific user data or provide other meaningful instance-​
​specific information back to the​​Plugin Backend.​​This​​is not mandatory, but may enrich the data available to the​
​Plugin Implementer​​and improve the overall user experience​​using the Plugin.​

​Note: During the load sequence described in the​​Handshake​​section, the Plugin needs to authenticate the​
​current user by using the Bilinfo Single Sign-On sequence. Performing this authentication will result in a series​
​of redirects, through which it is important that the Plugin keep a hold of the reference that was supplied during​
​these redirects.​

​User Interface​
​This section describes certain guidelines, which should be considered, when developing a Case Plugin to be​
​hosted within the Bilinfo user interface.​

​The following guidelines may be considered:​

​-​ ​Screen size​
​o​ ​Height is unbound​
​o​ ​Width​

​▪​ ​When in full screen: 1184, afterwards 900​
​▪​ ​iPad landscape: 733​

​-​ ​Modal and errors: The Plugin is encouraged to use its own screen space to provide meaningful errors​
​-​ ​Printing​
​-​ ​Bookmarks​

​21​

https://www.bilinfo.net/
https://www.qa01.bilinfo.net/


​-​ ​Top navigation – will be disallowed – the plugin can only control its own iframe and will not be able to​
​set top window navigation (aka will not be able to change the address of the current page, opening​
​links in new tabs/windows will probably be allowed)​

​Messaging​
​The communication between the Host Client-Side and Plugin Client-Side is done using the HTML5​
​Window.postMessage()​​infrastructure as it allows safe​​cross-origin communication. You can read more​
​about sending and receiving messages at Mozilla Developer Network (MDN) web docs​​6​​. The communication​
​protocol will be versioned according to Semantic Versioning rules​​7​​.​

​The two parties (Host and Plugin) will exchange data by posting messages to each other. The posted messages​
​are required to follow the structure defined in the​​ApplicationMessage​​section. After sending an​
​ApplicationMessage​​, the browser will wrap the message​​into a​​MessageEvent​​and deliver it to the​
​intended destination.​

​5.4.1​ ​MessageEvent​
​To enable safe data transfer from one frame to another, browsers automatically encapsulate all sent messages​
​in a​​MessageEvent​​.​

​For the purpose of this integration, only the properties seen in​​Table 5-2​​are required. An example can be​​seen​
​in​​Listing 5-1.​

​Table 5-2: MessageEvent properties​

​Property name​ ​Description​
​Origin​ ​The scheme, hostname and port of the document sending the message​
​Data​ ​The payload of the message, which in our case, is an​​ApplicationMessage​

​{​
​"origin"​​:​​"https://www.bilinfo.net/"​​,​
​"data"​​: { ...​​ApplicationMessage​​... }​

​}​

​Listing 5-1: MessageEvent example​

​One should think of​​MessageEvent​​as a Transport Layer,​​enabling security validation and payload carry. The​
​security part is described in further detail in the​​Security​​section.​

​5.4.2​ ​ApplicationMessage​
​An​​ApplicationMessage​​contains the protocol specific​​data exchanged between the Host and Plugin. The​
​message is composed of two mandatory parts: a​​Header​​and a​​Body.​

​6​ ​https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage​
​7​ ​http://semver.org/​

​22​

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
http://semver.org/


​Header​
​The​​Header​​is a mandatory part of a message containing​​general-purpose information.​​Table 5-3​​shows the​
​mandatory properties for an​​ApplicationMessage​​.​

​Table 5-3: ApplicationMessage header properties​

​Property name​ ​Description​
​Type​ ​A protocol-specific string identifying the data type contained in the body​
​Version​ ​The protocol version the Plugin desires to use throughout the communication​
​reference​ ​The reference query string parameter specified by the Host when loading the Plugin​

​Body​
​The​​Body​​is a mandatory part of a message containing​​actual application data, according to the type specified​
​in the header.​​Listing 5-2​​shows an example of a handshake​​request enveloped in a​​MessageEvent​​.​

​{​
​"origin"​​:​​"https://www.bilinfo.net/"​​,​
​"data"​​: {​

​"header"​​:{​
​"type"​​:​​"handshake.request"​​,​
​"version"​​:​​"1.0.0"​​,​
​"reference"​​:​​"1234"​

​},​
​"body"​​:{ }​

​}​
​}​

​Listing 5-2: ApplicationMessage embedded in MessageEvent​

​Security​
​Security procedures need to be employed by the Host and Plugin when sending and receiving data, according​
​to the following. This section will cover the security measures that must be adhered to when sending and​
​receiving data to and from the Host.​

​5.5.1​ ​Sending data​
​Sending data is achieved through a​​Window.postMessage​​call as seen in​​Listing 5-3.​​The properties can be​
​seen in​​Table 5-4.​

​window​​.​​postMessage​​(​​message​​,​​targetOrigin​​, [​​transfer​​]);​

​Listing 5-3: Sending data example​

​Table 5-4: window.postMessage parameters​

​window​ ​The window the message should be dispatched to.​
​From the Host perspective, this is the Plugin iframe.​
​From the Plugin perspective, this is the Host window (which can be obtained through​
​window.parent​​property)​

​message​ ​An​​ApplicationMessage​​– the browser will automatically​​wrap it in a​​MessageEvent​
​targetOrigin​ ​To whom this message should be sent​

​23​



​From the Host perspective, this is the URL used to load the Plugin​
​From the Plugin perspective, this should always be https://www.bilinfo.net​

​transfer​ ​Optional parameter, not used​

​It is paramount always to specify the​​targetOrigin,​​when posting a message, as this is the only way to​
​authenticate the receiving frame. Specifying “*” as the​​targetOrigin​​in production is forbidden, as it​​will​
​cause the browser to post messages to any frame, regardless of origin.​

​5.5.2​ ​Receiving data​
​Receiving data is achieved by subscribing to the “​​message​​”​​event. An example can be seen in​​Listing 5-4​​.​

​window​​.​​addEventListener​​(​​"message"​​,​​receiveMessage​​,​​false​​);​

​function​​receiveMessage​​(​​event​​)​
​{​

​//perform security checks​
​}​

​Listing 5-4: Receiving data example​

​The​​receiveMessage​​event handler will be called with​​a​​MessageEvent​​parameter. Upon receiving a​
​message, the receiving party should​​always​​:​

​-​ ​Check the​​origin​​attribute of the event to authenticate​​the sender​
​-​ ​Perform input validation on the data attribute to ensure it’s in the desired format, i.e.​

​ApplicationMessage​​.​
​-​ ​Check the origin properly exactly to match the FQDN(s) you expect. Note that code such as that found​

​in​​Listing 5-5​​leads to very imprecise matching and​​may result in insecure data reception. Consider that​
​an origin​​“www.owasp.org.attacker.com​​” would result​​in a positive match.​

​if​​(message.orgin.indexOf(​​".owasp.org"​​)!=-1)​​{​
​/* ... */​

​}​

​Listing 5-5: Insecure Fully Qualified Domain Name (FQDN) check example​

​Additionally, even after receiving a message from an authenticated origin, it is of good practice to never​
​evaluate the received messages as code by using e.g.​​eval()​​or DOM insertion via​​innerHTML​​. Doing so,​​will​
​enable Cross-site scripting (XSS), which may have a severe impact on both Bilinfo.net and the​​Plugin​​Backend​
​and any related subsystems.​

​You can read more about security recommendations when doing web messaging at the​​Open Web Application​
​Security Project​​(OWASP) website​​8​​.​

​8​ ​https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Web_Messaging​

​24​

http://www.owasp.org.attacker.com/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Web_Messaging


​Handshake​
​The​​handshake​​procedure – seen in​​Figure 5-3​​– ensures​​that both parties are fully loaded and agree upon​
​what protocol specification version they are going to use. The Plugin should wait for the completion of the​
​handshake procedure before becoming available for user interaction. A loading indicator or spinner should be​
​displayed until completion.​

​Figure 5-3: Handshake interaction​

​The Plugin will initiate the handshake procedure, specifying the highest protocol version it supports. The Host​
​will then accept or reject the handshake request. For instance, a handshake request can be rejected if the​
​version specified by the Plugin is not supported by the Host​

​The protocol is versioned according to Semantic Versioning guidelines. This means that only changes to the​
​major component of the version (e.g. going from 1.0.0 to 2.0.0) will not be backwards compatible. Changes to​
​the minor (e.g. 1.0.0 to 1.1.0) and patch (e.g. 1.0.0 to 1.0.1) component will always be backwards compatible.​
​Consequently, during the handshake protocol, the two parties should agree on the major version component.​
​As an example, it is valid for the Host to use version 1.2.3 while the Plugin uses 1.0.0.​

​The Plugin should always specify the version using all three components and not use any pre-release specifiers.​
​Please refer to the guidelines specified in​​Table​​5-5.​

​Table 5-5: Plugin handshake version request guidelines​

​Version​ ​Is valid​
​1.0.0​ ​Yes​
​1​ ​No​
​1.0​ ​No​
​1.0.0-beta​ ​No​

​25​



​The handshake sequence follows the steps illustrated below:​

​1.​ ​The Host will load the Plugin specifying the​​reference​​query string parameter​
​2.​ ​The Plugin will send a​​Handshake Request Message​
​3.​ ​The Host will send a​​Handshake Response Message​

​Host will tolerate multiple handshake requests from the same Plugin, successfully accepting all of them if they​
​are valid. Therefore, when implementing the handshake sequence, the Plugin developer can use the​
​setInterval​​function to request a handshake until​​it receives an acceptance from the Host. Please​
​remember to cancel the interval once you received a handshake acceptance/rejection.​

​5.6.1​ ​Handshake Request Message​
​The​​Handshake Request Message​​specification and example​​can be seen in​​Table 5-6​​and​​Listing 5-6​​respectively.​

​Table 5-6: Handshake request message specification​

​Location​ ​Name​ ​Description​
​type​ ​Hardcoded to “​​handshake.request​​”​
​version​ ​The protocol version used by the Plugin​
​reference​ ​The reference query string parameter specified by the​

​Host when loading the Plugin​
​body​ ​This message has an empty body​

​Example​

​{​
​"header"​​:{​

​"type"​​:​​"handshake.request"​​,​
​"version"​​:​​"1.0.0"​​,​
​"reference"​​:​​"1234abcd"​

​},​
​"body"​​:{ }​

​}​

​Listing 5-6: Handshake request message example​

​26​



​5.6.2​ ​Handshake Response Message​
​The​​Handshake Response Message​​specification can be​​seen in​​Table 5-7​​. Example responses can be seen​​in​
​Listing 5-7​​and​​Listing 5-8​​for successful and failed​​handshakes, respectively.​

​Table 5-7: Handshake response message specification​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​handshake.response​​”​

​version​ ​The protocol version used by the Host​

​reference​ ​The reference query string parameter specified by the​
​Host when loading the Plugin​

​body​ ​status​ ​The result of the handshake attempt.​
​Possible values are:​

​-​ ​“​​ok​​” – successful handshake​
​-​ ​“​​rejected​​” – failed handshake​

​reason​ ​In the case of rejected handshakes​

​Successful handshake​
​{​

​"header"​​:{​
​"type"​​:​​"handshake.response"​​,​
​"version"​​:​​"1.2.3"​​,​
​"reference"​​:​​"1234abcd"​

​},​
​"body"​​:{​

​"status"​​:​​"ok"​
​}​

​}​

​Listing 5-7: Successful handshake response message​

​Failed handshake​
​{​

​"header"​​:{​
​"type"​​:​​"handshake.response"​​,​
​"version"​​:​​"9.2.3"​​,​
​"reference"​​:​​"1234abcd"​

​},​
​"body"​​:{​

​"status"​​:​​"rejected"​
​"reason"​​:​​"version not specified or not supported"​

​}​
​}​

​Listing 5-8: Failed handshake response message​

​27​



​Data exchange interaction​
​This section will cover the data and message exchanges between the Host and Plugin – after a successful​
​Handshake has been performed.​​Figure 5-4​​shows the​​typical data exchange flow between the Host and Plugin.​

​Figure 5-4: Data exchange interaction​

​The Host will send updates to the Plugin in real-time and the Plugin via the​​data.case​​message. The Plugin​​is​
​expected to report information back to the Host in real-time via the​​finance.data​​message. The message​
​finance.data​​is only for finance and leasing, other​​services like insurance are not expected to send data​
​back.​

​5.7.1​ ​Input (Host-to-Plugin)​
​Input defines the data the Host will send to the Plugin. The Plugin does not have VETO power​​9​ ​towards​
​accepting or denying the data sent by the host. However, in the case of invalid data, the Plugin may choose to​
​display an error message to the user via its own user interface.​

​All the Case data will be sent to the Plugin via a single message containing information about the Customer​
​(​​PrivateCustomer​​or​​BusinessCustomer​​),​​Car​​and​​TradeInCar.​

​Subsequent updates to the Case – performed either by the user via updates or automatically via recalculations​
​– will result in the Plugin receiving a new message containing information about all the entities, not just the​
​modified ones. This means that the Plugin can always consider the last received message as the “source of​
​truth”.​

​9​ ​Power or ability to unilaterally stop an official​​action (la. "I forbid")​

​28​



​There​​are​​no​​guarantees​​about​​the​​minimum​​amount​​of​​data​​the​​Host​​will​​send​​to​​the​​Plugin.​​This​​is​​because​
​data​​is​​being​​sent​​to​​the​​Plugin​​as​​the​​user​​enters​​it.​​Therefore,​​the​​Plugin​​should​​be​​able​​to​​deal​​with​​missing​
​fields, or fields initialized with null or empty string.​

​Case specification message​
​Table 5-8​​shows the specification for the​​data.case​​message sent from the Host to the Plugin. In essence, this​
​specification body may be read as the root type, with each subtype – and their respective subtypes – specified​
​in the following subsections.​

​Table 5-8: Case data message specification​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​data.case​​”​

​version​ ​The protocol version used by the Host​
​reference​ ​The reference query string parameter specified by the Host when​

​loading the Plugin​
​body​ ​caseId​ ​Uniquely identifies the case this Plugin is part of​

​viewUrl​ ​A url that can be used to navigate to the case hosting the Plugin​
​isActive​ ​A boolean describing whether the Plugin is marked as active by the​

​user (Anvend på sag)​
​customer​ ​An object representing a​​PrivateCustomer​​or a​​BusinessCustomer​
​car​ ​An object representing a​​Car​
​tradeInCar​ ​An object representing a​​TradeInCar​
​businessUsers​ ​An object representing​​BusinessUsers​​(only if customer​​is business)​

​29​



​PrivateCustomer​
​Table 5-9​​shows the specification for the PrivateCustomer​​variant of the​​customer​​field of the​​Case​
​specification message​​.​​An example can be seen in​​Listing​​5-9​​on Page​​31​​.​

​Table 5-9: PrivateCustomer data specification​

​Field​ ​Type​ ​Description​
​type​ ​string​ ​Hardcoded to “​​private​​” for private customers​
​info​ ​object​ ​Object of type​​PrivateCustomer​
​coApplicant​ ​object​ ​Object of type​​CoApplicant​

​PrivateCustomerInfo​
​Table 5-10​​shows the specification for the PrivateCustomerInfo​​type, member of the​​PrivateCustomer​​type.​

​Table 5-10: PrivateCustomerInfo data specification​

​Field​ ​Type​ ​Description​ ​Example​
​firstName​ ​string​ ​“John”​
​lastName​ ​string​ ​“Doe”​
​street​ ​string​ ​“Axel Kiers Vej”​
​streetNumber​ ​string​ ​“11”​
​zipCode​ ​number​ ​8270​
​city​ ​string​ ​“Højbjerg”​
​country​ ​string​ ​“Denmark”​
​email​ ​string​ ​“​​private@email.com​​”​
​cellphone​ ​string​ ​Mobile phone​ ​“86112233”​
​coOrAtt​ ​string​
​cpr​ ​string​ ​“0101870006”​
​phone​ ​string​ ​Landline phone​ ​“86112233”​
​driverLicenseNumber​ ​string​ ​Driver license number​ ​“12345678”​

​CoApplicant​
​Table 5-11​​shows the specification for the CoApplicant​​type with example values, member of the​
​PrivateCustomer​​type.​

​Table 5-11: CoApplicant data specification​

​Field​ ​Type​ ​Description​ ​Example​
​firstName​ ​string​ ​“John”​
​lastName​ ​string​ ​“Doe”​
​street​ ​string​ ​“Axel Kiers Vej”​
​streetNumber​ ​string​ ​“11”​
​zipCode​ ​number​ ​8270​

​30​

mailto:private@email.com


​city​ ​string​ ​“Højbjerg”​
​country​ ​string​ ​“Denmark”​
​email​ ​string​ ​“​​coapplicant@email.com​​”​
​cellphone​ ​string​ ​Mobile phone​ ​“86112233”​
​coOrAtt​ ​string​

​cpr​ ​string​ ​“0101870006”​
​phone​ ​string​ ​Landline phone​ ​“86112233”​

​Example​
​Listing 5-9​​below shows an example of the​​PrivateCustomer​​variant of the customer type. This is a part of the​
​overall​​Case specification message​​received by the​​Plugin from the Host.​

​"customer"​​: {​
​"type"​​:​​"private"​​,​
​"info"​​: {​

​"firstName"​​:​​"Cosmin"​​,​
​"lastName"​​:​​"Lazar"​​,​
​"cpr"​​:​​"2510871212"​​,​
​"street"​​:​​"gade"​​,​
​"streetNumber"​​:​​"1"​​,​
​"city"​​:​​"Aarhus N"​​,​
​"zipCode"​​:​​8200​​,​
​"country"​​:​​"denmark"​​,​
​"cellphone"​​:​​"21212121"​​,​
​"coOrAtt"​​:​​null,​
​"phone"​​:​​"21212121"​

​},​
​"coApplicant"​​: {​

​"firstName"​​:​​"Cosmin2”​​,​
​"lastName"​​:​​"Lazar2"​​,​
​"cpr"​​:​​"2510871212"​​,​
​"street"​​:​​"gade"​​,​
​"streetNumber"​​:​​"1"​​,​
​"city"​​:​​"Aarhus N"​​,​
​"zipCode"​​:​​8200​​,​
​"country"​​:​​"denmark"​​,​
​"cellphone"​​:​​"21212121"​​,​
​"coOrAtt"​​:​​null,​
​"phone"​​:​​"21212121"​

​}​
​}​

​Listing 5-9: Case data message example​

​31​

mailto:coapplicant@email.com


​BusinessCustomer​
​Table 5-12​​shows the BusinessCustomer variant of the​​customer​​field of the​​Case specification message​​.​

​Table 5-12: BusinessCustomer data specification​

​Field​ ​Type​ ​Description​
​type​ ​string​ ​Hardcoded to “​​business​​” for business customers​

​info​ ​object​ ​Object of type​​BusinessCustomerInfo​
​decisionMaker​ ​object​ ​Object of type​​DecisionMaker​

​BusinessCustomerInfo​
​Table 5-13​​shows the specification for the BusinessCustomerInfo​​type, member of the​​BusinessCustomer​​type.​

​Table 5-13: BusinessCustomerInfo data specification​

​Field​ ​Type​ ​Description​ ​Example​
​companyName​ ​string​ ​“Ebay Classifieds”​
​companyType​ ​number​ ​Value from​​CompanyType​ ​1​
​street​ ​string​ ​“Axel Kiers Vej”​
​streetNumber​ ​string​ ​“11”​
​zipCode​ ​number​ ​8270​
​city​ ​string​ ​“Højbjerg”​
​country​ ​string​ ​“Denmark”​
​email​ ​string​ ​“​​business@business.com​​”​
​phone​ ​string​ ​Landline phone​ ​“86112233”​
​cellphone​ ​string​ ​Mobile phone​ ​“86112233”​
​coOrAtt​ ​string​
​cvr​ ​string​ ​“20618175”​

​CompanyType​
​Table 5-14​​shows the specification for of the CompanyType​​identifier, member of the​​BusinessCustomerInfo​
​type.​

​Table 5-14: CompanyType data specification​

​Value​ ​Type​ ​Description​
​0​ ​number​ ​Unknown​
​1​ ​number​ ​A/S​
​2​ ​number​ ​ApS​
​3​ ​number​ ​Enkeltmandsvirksomhed​
​4​ ​number​ ​I/S​

​32​

mailto:business@business.com


​DecisionMaker​
​Table 5-15​​shows the specification of the DecisionMaker​​type, member of the​​BusinessCustomer​​type.​

​Table 5-15: Decision maker data specification​

​Field​ ​Type​ ​Description​ ​Example​
​firstName​ ​string​
​lastName​ ​string​
​title​ ​string​
​phone​ ​string​
​cellphone​ ​string​
​email​ ​string​

​Car​
​Table 5-17​​shows the specification of the Car type​​found in the​​car​​field of the​​Case specification​​message​​.​

​Table 5-17: Car data specification​

​Field​ ​Type​ ​Description​ ​Example​
​isFactoryNew​ ​boolean​
​dbiId​ ​number​

​modelCatalogueId​ ​string​ ​Modelcatalogue​
​identifier​

​893757B3-E30B-​
​CE26-681C-​
​08CF06294F34​

​type​ ​number​ ​Value from​​CarType​ ​1​
​make​ ​string​
​model​ ​string​
​variant​ ​string​
​modelYear​ ​number​
​numberOfDoors​ ​number​
​mileage​ ​number​
​motor​ ​string​
​color​ ​string​ ​Black​
​fuelType​ ​number​ ​Value from​​FuelType​ ​2​
​kmPerLiter​ ​number​
​registrationNumber​ ​string​

​registrationDate​ ​string​ ​String representing an​
​ISO 8601 date​

​2015-08-​
​31T22:00:00.000Z​

​ownWeight​ ​number​ ​1600​
​deliveryCost​ ​number​ ​Delivery cost ex. vat​ ​2080​
​deliveryCostVat​ ​number​ ​Vat of delivery cost​ ​520​
​licensePlateCost​ ​number​ ​Price for the license plate​ ​1180​

​33​



​dealerEquipments​ ​array​ ​Array of​
​DealerEquipment​

​factoryEquipments​ ​array​ ​Array of​
​FactoryEquipment​

​listPrice​ ​object​ ​Object of type​​Price​ ​List price from DBI​
​salesPrice​ ​object​ ​Object of type type​​Price​ ​Sales price on the​

​case​
​vin​ ​string​
​kmWaranty​ ​boolean​ ​Relevant for used cars, a​

​warranty that the car’s​
​mileage hasn’t been​
​tampered with​

​discount​ ​number​ ​Discount ex. vat​ ​8000 (for a total​
​discount of 10000)​

​discountVat​ ​number​ ​Discount vat​ ​2000 (for a total​
​discount of 10000)​

​timingBeltReplaced​ ​number​ ​Value from​
​TimingBeltReplaced​

​2​

​serviceBook​ ​boolean​ ​Relevant for used cars,​
​null otherwise​

​True​

​serviceBookEnum​ ​number​ ​Value from​​ServiceBook​ ​1​
​toldAndSkatVariant​ ​string​ ​The ts_variant​

​information – as supplied​
​by DBI – only applies to​
​new cars​

​ownerTaxPerYear​ ​number​ ​Represents the value of​
​Weight tax, Green tax or​
​CO2 tax​

​3200​

​effect​ ​number​ ​Horse power​ ​200​
​cashPriceInclVat​ ​number​ ​Car total price (discount​

​detracted) including​
​dealer- and factory​
​equipment, delivery cost​
​and license plate cost,​
​and registration fee.​
​Always including VAT​

​numberOfAirbags​ ​number​ ​Number of Airbags​ ​2​
​numberOfIntegratedChildSeat​ ​number​ ​Number of ChildSeats​ ​2​
​numberOfSeatBeltAlarms​ ​number​ ​Number of Seatbelt​

​alarms​
​2​

​euroNcapTopRated​ ​boolean​ ​5 stars in EuroNCap​
​(toprated)​

​true​

​34​



​totalWeight​ ​number​ ​Total weight of the car​
​in kg​

​1500​

​hasRadio​ ​boolean​ ​Does the vehicle have​
​radio​

​true​

​hasABS​ ​boolean​ ​Does the vehicle have​
​abs brakes​

​true​

​hasESP​ ​boolean​ ​Does the vehicle have​
​ESP​

​false​

​isVatPaid​ ​boolean​ ​Has the vat on the​
​vehicle been paid​

​true​

​isTaxPaid​ ​boolean​ ​Has the registration tax​
​been paid​

​false​

​approvedKmPerLiterMeasurementType​ ​string​ ​Which method has been​
​used for measuring​
​kmPerLiter WLTP,​
​NEDC1, NEDC2​

​NEDC1​

​approvedKmPerLiter​ ​number​ ​WLTP or NEDC value for​
​KmPerLiter​

​CarType​
​Table 5-18​​shows the specification of the CarType​​type, member of the​​Car​​and​​TradeInCar​​types.​

​Table 5-18: CarType data specification​

​Value​ ​Type​ ​Description​
​1​ ​number​ ​PrivateCar​
​2​ ​number​ ​VanExVat​
​3​ ​number​ ​VanInclVat​
​4​ ​number​ ​Bus​
​5​ ​number​ ​Camping Bus​
​6​ ​number​ ​Caravan (No engine)​
​7​ ​number​ ​Motorcycle​

​FuelType​
​Table 5-19​​shows the specification for the FuelType​​identifier, member of the​​Car​​and​​TradeInCar​​types.​

​Table 5-19: FuelType data specification​

​Value​ ​Type​ ​Description​
​0​ ​number​ ​Unknown​
​1​ ​number​ ​Gasoline​
​2​ ​number​ ​Diesel​
​3​ ​number​ ​Electric​

​35​



​Price​
​Table 5-20​​shows the specification for the Price type,​​member of the​​Car​​and​​FactoryEquipment​​types.​

​Table 5-20: Price data specification​

​Field​ ​Type​ ​Description​ ​Example​
​costPrice​ ​number​ ​Cost price ex. vat, profit and​

​registration fee​
​80499​

​vat​ ​number​ ​22137​
​profit​ ​number​ ​Dealer profit ex. vat​ ​8050​
​registrationFee​ ​number​ ​82382​
​taxableAmount​ ​number​

​DealerEquipment​
​Table 5-21​​shows the specification for the DealerEquipment​​type, member of the​​Car​​type.​

​Table 5-21: DealerEquipment data specification​

​Field​ ​Type​ ​Description​ ​Example​
​description​ ​string​ ​Telefonholder​
​vat​ ​number​ ​500​
​costPrice​ ​number​ ​Value ex. profit and ex. vat​ ​1000​
​profit​ ​number​ ​Value ex. vat​ ​1000​
​code​ ​string​ ​Dealer assigned identifier​ ​RS01​

​FactoryEquipment​
​Table 5-22​​shows the specification for the FactoryEquipment​​type, member of the​​Car​​type.​

​Table 5-22: FactoryEquipment data specification​

​Field​ ​Type​ ​Description​ ​Example​
​description​ ​string​ ​Fartpilot​
​code​ ​string​ ​Dbi code​ ​RS02​
​listPrice​ ​Price​
​salesPrice​ ​Price​

​36​



​TimingBeltReplaced​
​Table 5-23​​shows the specification for the TimingBeltReplaced​​type, member of the​​Car​​and​​TradeInCar​​types.​

​Table 5-23: TimingBeltReplaced data specification​

​Value​ ​Type​ ​Description​
​0​ ​number​ ​Unknown​
​1​ ​number​ ​Yes​
​2​ ​number​ ​No​
​3​ ​number​ ​NoTimingBelt​

​ServiceBook​
​Table 5-24​​shows the specification for the​​ServiceBook​​type, member of the​​Car​​and​​TradeInCar​​types.​

​Table 5-24: ServiceBook data specification​

​Value​ ​Type​ ​Description​
​0​ ​number​ ​NotFilledOut​
​1​ ​number​ ​FilledOut​
​2​ ​number​ ​PartiallyFilledOut​

​TradeInCar​
​Table 5-25​​shows the specification of the TraceInCar​​type found in the​​tradeInCar​​field of the​​Case​
​specification message​​.​

​Table 5-25: TradeInCar data specification​

​Field​ ​Type​ ​Description​ ​Example​
​registrationDate​ ​string​ ​String representing an ISO​

​8601 date​
​2015-08-​
​31T22:00:00.000Z​

​type​ ​number​ ​Value from​​CarType​ ​2​
​make​ ​string​ ​Citroën​
​model​ ​string​ ​C1​
​variant​ ​string​ ​Sport​
​color​ ​string​ ​Black​
​kmWaranty​ ​boolean​ ​true​
​timingBeltReplaced​ ​number​ ​Value from​

​TimingBeltReplaced​
​2​

​timingBeltReplacedAtMileage​ ​number​ ​25000​
​timingBeltReplaced​ ​string​ ​String representing an ISO​

​8601 date​
​2015-08-​
​31T22:00:00.000Z​

​serviceBook​ ​boolean​ ​true​

​37​



​serviceBookEnum​ ​number​ ​Value from​​ServiceBook​ ​1​
​majorDamages​ ​number​ ​Value from​​MajorDamages​ ​0​
​registrationNumber​ ​string​ ​AB22333​
​vin​ ​string​ ​LKFG3423432345674​
​modelYear​ ​number​ ​2010​
​fuelType​ ​number​ ​Value from​​FuelType​ ​3​
​latestMotDate​ ​string​ ​String representing an ISO​

​8601 date​
​2015-08-​
​31T22:00:00.000Z​

​mileage​ ​number​ ​50000​
​costPrice​ ​number​ ​20000​
​vat​ ​number​ ​0​
​remainingDebt​ ​number​ ​5000​
​financedAt​ ​string​ ​Jyffi​
​isVatFree​ ​boolean​ ​False​
​comment​ ​string​ ​Comment about the car​

​MajorDamages​
​Table 5-26​​shows the specification for the MajorDamages​​identifier, member of the​​TradeInCar​​type.​

​Table 5-26: MajorDamages data specification​

​Value​ ​Type​ ​Description​
​0​ ​number​ ​No​
​1​ ​number​ ​Yes​
​2​ ​number​ ​Unknown​

​BusinessUsers​
​Table 5-​​27 shows the specification of the​​businessUsers​​field of the​​Case specification message​​.​

​Table 5-27: BusinessUsers data specification​

​Field​ ​Type​ ​Description​ ​Example​
​businessUser1​ ​BusinessUser​ ​Object of type​​BusinessUser​
​businessUser2​ ​BusinessUser​ ​Object of type​​BusinessUser​

​38​



​BusinessUser​
​Table 5-2​​8 shows the specification for the BusinessUser​​type.​

​Table 5-28: Business user data specification​

​Field​ ​Type​ ​Description​ ​Example​
​firstName​ ​string​ ​“John”​
​lastName​ ​string​ ​“Doe”​
​cpr​ ​string​ ​“0101870006”​
​driversLicenseNumber​ ​string​ ​“10557254”​
​street​ ​string​ ​“Axel Kiers Vej”​
​streetNumber​ ​string​ ​“11”​
​zipCode​ ​number​ ​8270​
​phone​ ​string​ ​Landline phone​ ​“86112233”​
​mobilePhone​ ​string​ ​Mobile phone​ ​“86112233”​
​email​ ​string​ ​“bruger​​@email.​​dk”​
​city​ ​string​ ​“Højbjerg”​
​country​ ​string​ ​“Denmark”​
​gender​ ​number​ ​Value from​​Gender​ ​1​

​Gender​
​Table 5-2​​9 shows the specification for the Gender​​identifier, member of the​​BusinessUser​​type.​

​Table 5-29: Gender data specification​

​Value​ ​Type​ ​Description​
​0​ ​number​ ​Unknown​
​1​ ​number​ ​Male​
​2​ ​number​ ​Female​

​39​

mailto:coapplicant@email.com


​5.7.2​ ​Output (Plugin-to-Host)​
​Output defines the data Host will receive from Plugin.​

​Finance specification message​
​In case of loan offers, the Plugin should publish a loan specification message after each calculation.​​Table 5-​​30​
​and​​Table 5-​​31 show the specification for the​​Finance​​specification message.​​This message is only for plugins​
​that offer either finance or leasing.​

​Table 5-30: Finance specification message​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​finance.data​​”​

​version​ ​The protocol version used by the Host​
​reference​ ​The reference query string parameter specified by the Host when​

​loading the Plugin​
​body​ ​Details description of the fields can be found​​Table​​5-28​​.​

​Table 5-31: Finance specification data message fields​

​Field​ ​Type​ ​Description​ ​Example​
​downPayment​ ​number​ ​Including VAT​
​profit​ ​number​ ​Dealer profit​
​monthlyPayment​ ​number​ ​Loan and leasing.​
​endDate​ ​string​ ​String representing an ISO 8601​

​date loan and leasing​
​2015-08-​
​31T22:00:00.000Z​

​residualValue​ ​number​ ​leasing​
​interest​ ​number​ ​loan (rente)​
​anualExpensesPercentage​ ​number​ ​(ÅOP) loan​
​financeExpenses​ ​number​ ​(finansieringsomkostninger) loan​

​The host will send a protocol error message if the Plugin submits an invalid Finance specification message​

​40​



​Case update message​
​The Plugin sends the​​case.update​​message to inform​​the Host about Server-Side changes to the application.​
​Receiving a message of this type will cause the Host to do a server-side call to reload the offer/application​
​details. This message is for all types for services, finance, leasing, insurance etc.​

​Table 5-​​32 shows the specification for the​​Case update​​message.​

​Table 5-32: Case update message​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​case.update​​”​

​version​ ​The protocol version used by the Host​
​reference​ ​The reference query string parameter specified by the Host when​

​loading the Plugin​
​body​ ​Empty body​

​Please note that this is a​​crucial​​part to integration​​between Bilinfo and the Plugin, which enables Bilinfo to​
​display up-to-date information regarding the status of the Application. This interaction is described in further​
​detail in the​​Application interaction​​section.​

​41​



​Save​​interaction​
​The​​Save​​interaction​​may be triggered at any time​​from Bilinfo to save information to a Case. In order to save​
​any information pertaining to the Plugin, a “​​save.request”​​message is sent to the Plugin by the Host in the​
​event of a user action.​​Figure 5-5​​shows the​​Save​​interaction.​

​Figure 5-5: Save interaction diagram​

​Save request message​
​The Bilinfo Case contains transient information until the user decides to persist it by clicking the save button.​
​An automatic save can also occur when a set of preconditions are met. It is therefore important for the Plugin​
​to follow the lifecycle of the Case and save/discard changes at the same time.​

​After issuing a save request, the Host will wait for the Plugin’s acknowledgement for a maximum of​​3 seconds​​.​

​Table 5-3​​3 shows the specification for the​​Save request​​messag​​e.​

​Table 5-33: Save request message​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​save.request​​”​

​version​ ​The protocol version used by the Host​
​reference​ ​The reference query string parameter specified by the​

​Host when loading the Plugin​

​42​



​body​ ​The save command has an empty body​

​Save response message​
​If the Plugin replies within the allotted timeout, the Host will notify the user upon the success/failure of the​
​save. Alternatively, if the Plugin does not reply within the allotted timeout, the Host will proceed as if it​
​received a successful acknowledgement.​

​Table 5-3​​4 and​​Table 5-3​​5 respectively show a successful​​or failed save response from the Plugin to the Host.​

​Successful save​
​Table 5-34: Successful save response message​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​save.response​​”​

​version​ ​The protocol version used by the Host​
​reference​ ​The reference query string parameter specified by the​

​Host when loading the Plugin​
​body​ ​status​ ​“ok”​

​Failed save​
​Table 5-35: Failed save response message​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​save.response​​”​

​version​ ​The protocol version used by the Host​
​reference​ ​The reference query string parameter specified by the​

​Host when loading the Plugin​
​body​ ​status​ ​“fail”​

​reason​ ​Reason for failure​

​43​



​Application interaction​
​It​​is​​important​​for​​both​​systems​​to​​be​​kept​​in​​sync​​when​​the​​user​​decides​​to​​make​​an​​Application.​​Therefore,​​an​
​Application​​should​​not​​be​​considered​​submitted​​until​​the​​Host​​has​​been​​notified​​via​​a​​Server-Side​​call.​​Once​​the​
​application is submitted, the Plugin is expected to send a​​case.update​​message as described in section​​5.7.2​​.​

​Figure 5-6​​shows the Application interaction from​​initial User (i.e. Dealer) application through to the​
​intercommunication between the Plugin Server-Side and Host Server-Side and subsequent Plugin Client-Side to​
​Host Client-side​​case.update​​message.​

​Figure 5-6: Application interaction​

​Please note that the Plugin should only allow the user to apply when the​​isActive​​field, received in​​the​
​data.case​​message, is​​true​​.​

​For more information regarding the Application Status changes, the reader is referred to the​​Application​​Status​
​API​​section.​

​44​



​Other Messages​
​This section covers the messages that are not associated with any given interaction.​

​5.10.1​ ​Protocol Error message​
​The​​Protocol Error message​​is sent by the Host if​​the Plugin does not adhere to the protocol specification.​​Table​
​5-3​​6 shows the specification of the Protocol Error.​

​Table 5-36: Protocol Error Message specification​

​Location​ ​Name​ ​Description​
​header​ ​type​ ​Hardcoded to “​​protocol.error​​”​

​version​ ​The protocol version used by the Host​
​reference​ ​The reference query string parameter specified by the​

​Host when loading the Plugin​
​body​ ​message​ ​A string describing the error​

​Listing 5-10​​shows an example​​Protocol Error message.​

​{​
​"header"​​: {​

​"type"​​:​​"protocol.error"​​,​
​"version"​​:​​"1.0.0"​​,​
​"reference"​​:​​"1237"​

​},​
​"body"​​: {​

​"message"​​:​​"invalid reference, expecting reference​​1237"​
​}​

​}​

​Listing 5-10: Protocol Error message example​

​Errors that may be conveyed through this message include:​

​-​ ​Plugin sends a malformed message (missing header or body)​
​-​ ​Plugin specifies an invalid reference​

​45​



​6.​ ​Host Server-Side Services​
​This chapter will cover the Case Plugin Architecture related services that should be used to complete the Case​
​Plugin integration loop by e.g. reporting Application Status back to Bilinfo from their​​Plugin Backend.​

​Application Status API​
​To complete the feedback loop between the Plugin and Bilinfo backend, application status reports must be​
​supplied to the Application Status API. This section describes the API interface and specification.​

​6.1.1​ ​Base path​
​Each​​Plugin Implementer​​is assigned a dedicated endpoint​​with a dedicated set of claims required for calling​
​the API. Please note that the examples seen in​​Table​​6-1​​include a ”​​{plugin_implementer_identifier}​​“​
​placeholder in various locations. You must replace this placeholder with the identifier allocated upon the initial​
​registration process.​

​Table 6-1: Bilinfo service base path​

​Environment​ ​Endpoint​
​QA​ ​https://gw.qa01.bilinfo.net/{plugin_implementer_identifier}/api/v2​

​Production​ ​https://gw.bilinfo.net/{plugin_implementer_identifier}/api/v2​

​6.1.2​ ​Endpoints​
​The following section iterates through the endpoints available in the​​Application Status​​API. Each endpoint​​has​
​a specific path, which must be appended to the base path, and must be requested using a scope Bearer token​
​as specified in Section​​3.1.​

​ApplicationStatus​
​The​​ApplicationStatus​​endpoint is used to return the​​Application Status to Bilinfo.​

​●​ ​Path:​​/applicationstatus/{reference}​
​●​ ​Verb:​​PUT​
​●​ ​Authorization scope:​

​https://{plugin_implementer_identifier}.bilinfo.net/api/applicationstatus/wri​
​te​

​Request​
​Table 6-2​​describes the request specification for​​ApplicationStatus​​endpoint. Respectively​​Table 6-3​​and​​Table​
​6-4​​show the subtypes of that specification.​

​Table 6-2: ApplicationStatus endpoint request specification​

​Location​ ​Name​ ​Description​
​path​ ​reference​ ​The​​reference​​parameter supplied to the plugin. Refer​​to Section​​5.2​​for​

​further information​
​body​ ​object​ ​The body represent a mapping of the status for the different Brand & Product​

​ServiceTypes applied for in the Plugin.​

​46​



​Listing 6-1​​shows an example of the status update​​for a bundled application that contains both loan and​
​insurance. Please note that loan and leasing have their own status values, as defined in​​Table 6-3,​​whereas the​
​status for all the other ServiceTypes are defined in​​Table 6-4​

​{​
​"loan"​​: {​

​"providerName"​​:​​"Finance company Loan"​​,​
​"status"​​:​​1​​,​
​"statusText"​​:​​"Under processing"​

​},​
​"insurance"​​: {​

​"providerName"​​:​​"Insurance company"​​,​
​"status"​​:​​1​​,​
​"statusText"​​:​​"Sent"​

​}​
​}​

​Listing 6-1: Status update for bundled Application​

​Loan/Leasing ApplicationStatus​
​Table 6-3: ApplicationStatus identifier specification for loan or leasing​

​Value​ ​Description​
​0​
​1​ ​Under processing​
​2​ ​Effectuated​
​3​ ​Approved​
​4​ ​Denied​
​5​ ​Cancelled​
​6​ ​PreApproved​

​Generic ApplicationStatus​
​Table 6-4: Generic ApplicationStatus Identifier specification​

​Value​ ​Description​
​0​ ​Not Sent​
​1​ ​Sent​

​Response​
​Table 6-5​​shows the possible responses provided by​​the​​ApplicationStatus​​endpoint.​

​Table 6-5: ApplicationStatus endpoint response specification​

​Status code​ ​Description​
​200​ ​Successful response​

​47​



​400​ ​When one of the required parameters is missing or invalid​
​404​ ​When no offer can be found using the supplied​​reference​​parameter​
​500​ ​Internal server error during request processing​

​Example​
​An example request for the​​ApplicationStatus​​endpoint​​with applied reference and Bearer token can be seen in​
​Listing 6-2.​

​PUT /{plugin_implementer_identifier}/api/v2/applicationstatus/abc123 HTTP/1.1​
​Host: gw.bilinfo.net​
​Authorization: Bearer eyJ0eXA…PL4UPsfp​

​{​
​"loan"​​: {​

​"providerName"​​:​​"Finance company Loan"​​,​
​"status"​​:​​1​​,​
​"statusText"​​:​​"Under processing"​

​}​
​}​

​Listing 6-2: ApplicationStatus endpoint request example​

​SalesContract​
​The​​SalesContract​​endpoint is used for acquiring the​​sales contract pdf file.​

​●​ ​Path:​​/documents/salescontract/{reference}​
​●​ ​Verb:​​GET​
​●​ ​Authorization scope:​

​https://{plugin_implementer_identifier}.bilinfo.net/api/salescontract/read​

​Response​
​Table 6-6​​shows the possible responses provided by​​the​​SalesContract​​endpoint.​

​Table 6-6: SalesContract endpoint response specification​

​Status code​ ​Description​
​200​ ​Successful response containing the byte array representing the pdf​
​400​ ​When one of the required parameters is invalid​
​401​ ​When Authorization header is not specified or invalid​
​403​ ​When the sales contract cannot be generated due to:​

​-​ ​the application is not marked as active​
​-​ ​the user has not yet applied for financing​
​-​ ​the application has been deleted​

​404​ ​When no offer can be found using the supplied​​reference​​parameter, or the parameter is​
​not supplied at all​

​500​ ​Internal server error during request processing​

​48​


