BILINFO CASE PLUGIN

Third party integration document

Abstract

Bilinfo Case Plugin enables Dealers to manage financing and insurance offers on behalf of the
Customer within Bilinfo.nets “Sager” system. This document describes the prerequisites and
details for building a Case Plugin integration into Bilinfo.

Bilinfo
bilinfo@bilinfo.dk

mailto:bilinfo@bilinfo.dk

Version history

Version | Date Authors Comments
0.1.0 12/12/2016 Cosmin Constantin Lazar First draft version
Kim Jgrgensen

0.1.2 09/01/2017 Lisbeth Storgaard Added case flow

0.1.3 16/01/2017 Cosmin Lazar Use test client in OpenlD examples

0.1.4 27/02/2017 Ole Munk Lauritsen Updated input models

0.1.5 28/02/2017 Ole Munk Lauritsen Updated input models

0.1.6 14/03/2017 Cosmin Constantin Lazar Describe application status reporting api,
brands and products api, Oauth2 appendix,
update plugin messages

0.1.7 16/03/2017 Ole Munk Lauritsen Added deliveryCost, licensePlate and color to
Car model

0.1.8 24/03/2017 Cosmin Constantin Lazar Add phone to PrivateCustomer, CoApplicant,
and BusinessCustomer

0.1.9 27/03/2017 Cosmin Constantin Lazar Add vin and kmWarranty to Car

0.1.10 10/04/2017 Cosmin Constantin Lazar Add description of finance specification
message

0.1.11 25/04/2017 Cosmin Constantin Lazar Add description for Finance Offer on
Marketplaces

0.1.12 23/05/2017 Cosmin Constantin Lazar Add api description for accessing the sales
contract

0.1.13 08/06/2017 Cosmin Constantin Lazar Add specification for discount and
discountVat

0.1.14 10/07/2017 Cosmin Constantin Lazar Add specification for
driverLicenseNumber,
timingBeltReplaced, and serviceBook

0.1.15 14/07/2017 Cosmin Constantin Lazar Add specification for decisionMaker
and businessUserl

0.1.16 27/07/2017 Cosmin Constantin Lazar Add interaction diagrams and restructure sub-
chapters

0.1.17 28/07/2017 Cosmin Constantin Lazar Update disclaimer and remove watermark

0.1.18 05/09/2017 Cosmin Constantin Lazar Update QA base path for Bilinfo service

0.1.19 06/09/2017 Cosmin Constantin Lazar Specify verb and format for Calculation Matrix

0.1.20 06/09/2017 Cosmin Constantin Lazar Rename ‘case.data’ message to ‘data.case’

0.1.21 06/09/2017 Cosmin Constantin Lazar Add toldAndSkatvVariant to car data

1.22.0 06/09/2017 Cosmin Constantin Lazar Add code field to dealer mounted extra
equipment.

1.22.1 15/09/2017 Cosmin Constantin Lazar Remove companyName and carPrice from
Matrix calculation input

1.23.0 21/09/2017 Cosmin Constantin Lazar Add taxableAmount to car sales price

1.24.0 01/11/2017 Jacob Emborg Sgnderskov | Reworked document structure

Lisbeth Storgaard

1.25.0 07/11/2017 Jacob Emborg S¢nderskov | Added ownerTaxPerYear to Car data

2.0.0 15/11/2017 Henrik Thomsen Changed finance.update to case.update

2.1.0 24/11/2017 Henrik Thomsen Changed get brands and products to include
services provided

2.11 29/11/2017 Henrik Thomsen Changed this document from only supporting
finance, to being a finance and insurance
document (text change)

2.1.2 29/11/2017 Henrik Thomsen Add modelCataloguelId to Car

2.2.0 29/11/2017 Henrik Thomsen Changed Bilinfo Services

2.2.1 30/11/2017 Lisbeth Storgaard Updated user journey

2.2.2 8/1/2018 Jacob Emborg Sgnderskov | Move FOOP into Plugin Server-Side as optional
step.

2.2.3 17/1/2018 Jacob Emborg S¢nderskov | Added description to downPayment being
with VAT.

2.2.4 24/1/2018 Jacob Emborg Spnderskov | Add Versioning and Deprecation Policy chapter

2.2.5 31/01/2018 Henrik Thomsen Added 4 extra Cartypes

2.2.6 13/02/2018 Jacob Emborg Sgnderskov | Update Disclaimer and Versioning and
Deprecation chapters.

2.2.7 07/03/2018 Henrik Thomsen Disallow multiple servicetypes in the same
brand

2.2.8 12/04/2018 Jacob Emborg Sgnderskov | Change 1ogoUrl to 133x35

2.2.9 12/04/2018 Jacob Emborg Sgnderskov | Add “Migrating from Case Plugin Architecture
v1 to v2” chapter

2.2.10 25/04/2018 Jacob Emborg Sgnderskov | Add timingBeltReplacedAtMileage and
timingBeltReplacedAtDate in TradelnCar
type.

2.2.11 04/05/2018 Jacob Emborg Sgnderskov | Add companyLogoUrl field to calculation
matrix endpoint.

2.2.12 18/05/2018 Jacob Emborg Sgnderskov | Amended Versioning and Deprecation Policy
chapter

2.2.13 31/05/2018 Dianna Kristensen Add effect field to Car

2.3.0 31/05/2018 Dianna Kristensen Change QA urls from QA1 to QA01 ahead of
fall 2018 update. NB: Will not impact
production.

2.3.1 31/05/2018 Jacob Emborg Sgnderskov | Add change policy associated with GDPR to
Versioning and Deprecation Policy chapter

2.3.2 20/06/2018 Lisbeth Storgaard Add Finance Offer on Platforms user journey

Jacob Emborg Sgnderskov
233 14/08/2018 Jacob Emborg Sgnderskov | Add Unknown value to the FuelType enum
2.3.4 07/09/2018 Jacob Emborg Sgnderskov | Add Content-Security-Policy and X-FRAME-

OPTIONS recommendations

2.4.0 10/09/2018 Jacob Emborg Sgnderskov | Split User Journeys, Finance Offer On
Platforms, Bilinfo Shared Services and Bilinfo
Auth Services into separate documents

2.5.0 07/11/2018 Jacob Emborg Sgnderskov | Add CashPricelnclVat Case Specification
Message (Car)

2.6.0 12/11/2018 Henrik Thomsen Add new fields to Car

2.7.0 12/12/2018 Jacob Emborg Sgnderskov | Add extended service book field,
ServiceBookEnum to Car and TradelnCar

271 29/03/2019 Lars Tabro Sgrensen Add PreApproved status to StatusApi states

3.0.0 17/12/2025 Woijciech Janas Rework of business users structure —a new

BusinessUsers object is now related
with the Case object, not Customer

Contents
Version history

A. Disclaimer

Versioning and Deprecation Policy

Migrating from Case Plugin Architecture v1 to v2

B
C
D. Migrating from Case Plugin Architecture v2 to v3
1

Introduction

11
1.2
1.3

Purpose and Scope
References

Definitions and acronyms

2. System overview

21
2.2

System context

System introduction

3. Prerequisites

31
3.2
3.3

E

4.1

v

51
5.2
5.3
5.4
55
5.6
5.7
5.8
5.9
5.10

Security
Separate environments

Onboarding

Plugin Server-Side

Brands & Products API

Plugin Client-Side

Security

Handling the reference
User Interface

Messaging

Security

Handshake

Data exchange interaction
Save interaction
Application interaction

Other Messages

6. Host Server-Side Services

6.1

Application Status API

O W W 00 00 o v Pk

B D DA D D NN NNNNR R R R R R R R B B B @§
O O U1 D N 00 U1 W N B KB 00 00 O OO L1l 1 1 11 W K» Kk O

A. Disclaimer

Information presented here might be altered by the Bilinfo team from time to time. Inconsistencies across the
document are to be expected and they will be addressed in updates.

Any update will be specified in Version history.

GDPR compliance

Note, that the Plugin produced using this document may be subject to review by Bilinfo before it will be made
available via Bilinfo.net to ensure proper security measures have been employed.

Data and system integrity
Abuse of the system is forbidden in any regard. If you find a security issue or exploitation outside the original
intent of the system, you are expected to report the exploit or bug to the Bilinfo team.

B. Versioning and Deprecation Policy

Versioning in Bilinfo Services is essential to achieving our vision behind Partner integrations in Bilinfo. Using the
versioning principles described below will allow for your Bilinfo integrations to remain stable and fully
functional as the Bilinfo business continues to evolve and mature.

New Versions of the Bilinfo Services

The versioning principles employed in Bilinfo Services largely follow that of the Semantic Versioning
Specification™. The Semantic Versioning Specification, in short, specifies a version increment based on the
backwards compatibility of the APl or Web Service. A summary of the specification can be seen in the following
Listing B-1:

Given a version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible APl changes,
MINOR version when you add functionality in a backwards-compatible manner, and
PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the
MAJOR.MINOR.PATCH format.

Listing B-1: Semantic Versioning Specification 2.0.0 summary
The types of changes that are minor version changes and backward compatible are:

e Adding a new method (GET, POST etc.) to an API
e Adding a new property to the method response payload
e Adding a new non-personal data™ property to an iframe communication

The types of changes that are major version changes and not backward compatible are:

Removing existing method (GET, POST etc.) from an API

Renaming existing method path

Changing request body or query string for existing method

Changing method response structure and/or property names
Removing a property from an i frame communication

Renaming a property from an i frame communication

Renaming a message in an i frame communication

Adding a new personal data™ property to an iframe communication

! https://semver.org
2 Personal data as defined in Regulation (EU) 2016/679 of 27 April 2016 (GDPR) and the Danish Data Protection Act.

https://semver.org/

In general, new major versions of Bilinfo Services will only be introduced, when existing interfaces do not allow
for further evolution and improving of our Partner integrations without modification. Due to the need for
Partner action, major versions are used as a last resort and are as such very rare. Minor version updates will
require no Partner action.

Updating your Bilinfo integration

Updating your Bilinfo integration to support a new major version is non-optional as the existing integration
paradigm is fundamentally changed. It is as such not possible to opt out without risking major problems with
your Bilinfo integration. Minor versions, however, are fully optional, but may contain new fields, which may
enrich the experience and value of your Bilinfo integration.

To assist Partners in upgrading their Bilinfo integration with minimal efforts, each major version will be
associated with migration chapters added to this document. Minor version changes are specified primarily in
the Version History and are subject to the reader to adhere to the changes.

Deprecation Policy and Supported Versions
Bilinfo Services will support older versions for a grace period appropriate to the contractual obligations. After
that time, integrations based on older versions may no longer work or experience severe operational issues.

C. Migrating from Case Plugin Architecture v1 to v2
The following guide describes the main changes going from version 1 to version 2 of the Case Plugin
Architecture and how to migrate your version 1 Case Plugin to work in the new architecture.

Keep in mind that the Case Plugin Architecture is a dynamic solution, which —based on our Partners need — will
be updated continuously with new fields and data from Bilinfo.net, but rarely require specific Partner actions.

Version 2 of the Case Plugin Architecture enables the inclusion of additional services in your Case Plugin
integration which previously has been focused on Financing, i.e. Loan and Leasing. With version 2 it is possible
to define the delivered service, such as loan, leasing, insurance and — in time — more, that the Partner enables
the dealer and end customer to consume via the Bilinfo.net platform.

Major version changes for version 2 are found in:

e Brands & Products API
o Add delivered services to Product. See Bilinfo Brands and Products (Integration) document

and more specifically the Product type.

e Application Status
o Change in reporting scheme to a dictionary of delivered services. See the Request section.

® Plugin Client-Side
o Change name of finance.update message to case.update. See Data exchange
interaction section.
o Change version from "1.x.x" to "2.x.x.” for all application messages. See Messaging and more
specifically Header.

Additional minor version changes for version 2 can be found in:

e Plugin Client-Side
o Addition of modelCatalogueId to Car type. This requires access to Bilinfo’s ModelCatalogue
service which is outside the scope of this document.
o Addition of new types to CarType type.

D. Migrating from Case Plugin Architecture v2 to v3

Major version changes for version 3 are found in the Case specification message.
Change version from "2.x.x" to "3.x.x.” for all application messages. See Messaging and more specifically Header.

A new field businessUsers was added to the message, which reflects the change in objects relation — a business user
(“Bruger”) is related with the case, not with the customer. It has been therefore removed from the customer object,
and now will contain both business users (“Bruger 1” & “Bruger 2”).

The field businessUsers will remain null for private customers.

1. Introduction

1.1 Purpose and Scope

This document describes the technical solution for building a Case Plugin integration into Bilinfo.net via the

Case Plugin Architecture.

For Finance Offer On Platforms please refer to the Bilinfo Finance Offer On Platforms (integration) document.

1.2 References

Documents relevant to the reading of this document are listed here. Links and other external resources
accessible via the internet are referenced via footnotes relative to the term or technology. You should have
access to every document mentioned in this list. If that is not the case, contact Bilinfo.

Table 1-1: Document references

Document name

Description

Bilinfo Case Plugin
(Integration)

Bilinfo Case Plugin enables Dealers to manage financing and insurance offers
on behalf of the Customer within Bilinfo.nets “Sager” system. This document
describes the prerequisites and details for building a Case Plugin integration
into Bilinfo.

Bilinfo Case Plugin
(User journey)

Bilinfo Case Plugin enables Dealers to manage financing and insurance offers
on behalf of the Customer within Bilinfo.nets “Sager” system. This document
describes the User Journey of the product result of a Bilinfo Case Plugin
integration.

Bilinfo Auth Services
(Integration)

Bilinfo Auth Services encompass Single-Sign On and OAuth 2.0 mechanisms
that must be used when integrating Bilinfo. This document describes the
prerequisites and details of integrating into Bilinfo Auth Services.

Bilinfo Shared Services
(Integration)

Bilinfo Shared Services encompass Dealer Lookup and User Lookup Services
that may be used in building a Bilinfo integration. This document describes
the prerequisites and details of integrating into Bilinfo Shared Services.

Bilinfo Brands and Products
(Integration)

Brands and Products are a required element of both a Case Plugin and
Finance Offer On Platforms integration. This document describes the
prerequisites and details for building a Brands and Products API for
integrating into Bilinfo.

Bilinfo Finance Offer On
Platforms (User journey)

Bilinfo Finance Offer On Platforms enables Dealers to select Finance Offers
for Cars to be shown on Bilbasen, DBA and Dealer CMS sites. This document
describes the User Journey of the product result of a Bilinfo Finance Offer
On Platforms integration.

Bilinfo Finance Offer On
Platforms (Integration)

Bilinfo Finance Offer On Platforms enables Dealers to select Finance Offers
for Cars to be shown on Bilbasen, DBA and Dealer CMS sites. This document
describes the prerequisites and details for building a Finance Offer On
Platforms integration into Bilinfo.

1.3 Definitions and acronyms
The definitions and acronyms defined in Table 1-2 cover frequently used concepts, terms and acronyms used
throughout this document. It is suggested that the reader acquaints him- or herself with the key concepts and

refer to this list, when in doubt.

Table 1-2: Definitions and acronyms

Term/acronym

Definition

Bilinfo Services

Includes — but not limited to — Bilinfo Auth Services, Bilinfo Shared Services,
Bilinfo Finance Offer On Platform integrations and Bilinfo Case Plugin
integrations.

Partner

Synonym for the integrating party.

Case Plugin Architecture

System enabling the integration of external third party Case Plugins in the
Bilinfo.net context.

Bilinfo Shared Services

Aggregate term for APl and Data Services provided by Bilinfo to external
Partners and integrations.

FOOP

Acronym for Finance Offer On Platforms.

Finance Offer On Platforms

Feature which enables displaying Finance Offers on Bilbasen through
Bilinfo.

Platforms

Shorthand of the platforms with support for FOOP, i.e. DBA, Bilbasen and
CMS services.

Plugin (server-side/client-side)

Third party system developed for viewing within the context of Bilinfo.
Consists of a server-side and a client-side, respectively referred to as a
Plugin server-side and Plugin client-side.

SSO Single Sign-On. Authentication protocol employed by Bilinfo Host. Must be
adhered to by the Plugin.

Case A Case in Bilinfo consists minimum of a Customer and a car, but can also
include extra equipment and have a trade-in car added. On each case you
also find a calculation of the car price. The case is the collection of data
involved in selling a car in Bilinfo.

Brand Name of partner or an OEM brand.

Product Campaigns, loan-, leasing-, and insurance products, bundled or All inclusive

products.

Plugin Implementer

A Finance or Insurance company or any other partner that is implementing
a plugin for Bilinfo.net.

10

2. System overview

The following chapter will introduce the Plugin context and the main actors within the Case Plugin Architecture
with the intent of aiding the reader in understanding the implementation specifics to come in the subsequent
chapters.

2.1 System context

A Case Plugin (or simply a Plugin) is an extension point of Bilinfo.net that allows third parties to seamlessly
integrate new functionality. The interaction between the Host (Bilinfo.net) and the Plugin (third party), as seen
in Figure 2-1, is designed to offer the best experience to the end-user via real-time updates and ease of use.

Bilinfo Auth Services
Plugin ~—
= S cientsice e 0 —al g0 Bilinfo
| (Third party) 7=+ Authentication Authorization
I Service Service
| A
|
|
! Host S Sid
Application RSt aerver-oxe
Iggquest (Bilinfo.net)
|
|
Host — Application
' Ciient-Side fe——APRIANN | stans 5
I (Bilinfo.net) Service
|
| 3
|
|
|
Partner | Brands & Products Bilinfo Shared Services
Server-Side |
NN .
. I
1 Plugin Brands &
1 User Lookup Dealer Lookup
I Backend Produ_cts Service Service
I Service 1 Service
|
R .‘ -

Application Status Update

Figure 2-1: Case Plugin Architecture context diagram

There are several actors that tie together to make the integration work. These are largely split into Client-Side
and Server-Side components within different contexts as seen in Figure 2-1. Note that the dotted boxes and
interactions, seen in the Figure 2-1 context diagram, concern communications outside of the scope of this
document as this involves the internal processing done by the integrating party.

11

2.1.1 Plugin Server-Side

The Plugin Server-Side represents a set of services needed by the Host Server-Side in order to load the proper
third party Plugin Client-Side for a specific integration need. By querying said services, Bilinfo.net will be able to
easily integrate different Brands and Products into the Case Plugin context.

2.1.2 Plugin Backend Service
The Plugin Backend has a number of functions within the Plugin context, but is otherwise undefined in terms of
its implementation as it is outside the scope of this document. The functions the Plugin Backend must serve is:

1. Provide the JavaScript, CSS and HTML files constituting the Plugin Client-Side.
2. Handle internal processing of an Application based on business needs.
3. Report status updates to the Host Server-Side

Note, the Plugin Web Server and Plugin Server-Side are intentionally split into two distinct parts, but may exist
within the same deployment-wise context as shown by the “Partner Server-Side” grouping in Figure 2-1.

2.1.3 Plugin Client-Side

The Plugin Client-Side represents the Ul with which the Dealer interacts when preparing an Application for a
specific Brand and Product. It communicates both with Bilinfo via the Host Client-Side and the Plugin
Implementer’s backend via the Plugin Backend. Once an Application is ready for processing it is sent directly to
the Plugin Backend, processed internally by the Plugin Implementer with an Application Status being forwarded
to the Host Server-Side, and ultimately updated within the Plugin Client-Side via a message from the Host
Client-Side.

2.1.4 Host Server-Side
The Host Server-Side constitutes a set of services used by the Plugin Server-Side and Plugin Web Server. The
available services are described in further detail in Chapter 6.

In addition to providing services and API’s it also serves up the Host Client-Side.

2.1.5 Host Client-Side

The Host Client-Side constitutes the Bilinfo.net Case Plugin Architecture, which loads the Plugin Client-Side into
an iframe from an URL provided by the Plugin Server-Side. The resource pointed to the URL is not (necessarily)
served up by the Partner Server-Side, but is rather served by a Plugin Backend.

Additionally, the Host Client-Side negotiates the communication protocol to be used between it and the Plugin
Client-Side. The communication specifics regarding the handshake and client-side communication is described
in further detail in Chapter 5.

2.1.6 Bilinfo Shared Services
The Bilinfo Shared Services are described in the Bilinfo Shared Services document. See 1.2 References.

12

2.2 System introduction
The Plugin is hosted within the Bilinfo.net Case feature as seen in Figure 2-2. The plugins therefore become an
extension of the Case with bi-directional data exchange capabilities with Bilinfo.net.

Additional information regarding the flow and user interactions can be found in the Bilinfo Case Plugin (User
journey) document. See 1.2 References.

8il & ekstraudstyr
Bytebil
Beregning
Finansiering
Forsikring

Bvrige aftaler

Overblik inkl. moms

Keretojet:

Ekstraudstyr

Lev. omk.:
Kontant:
Kontant udh.
Byttebil:
Kebesum:
Manedlig ydelse:

A
Avance ekskl. moms
Karetajet.

Eftermonteret udstyr:

Finansiering

Total:

Krone-til-krone rabat:

Krone-til-krone rabat:

Host

429.293

4.480
433.773
-87.189
346.584
4769

343434

3.000

346.434

Sag 60164594 - Lisbeth Storgaard - Mazda CX-5 2,0 Sky-G 160 Vision AWD Van 5d

Logo ,

Tilfej forslag

@

Navn pé selskab

Civil status™®

-Veelg-

Beskeeftigelse®

Vielg-

Indkomst far skat™

kr/md

Kilometer pr. &r*

Pengeinstitut

Bank

Tilmeld Betalingsservice

Signatur

Markedsfering
Via
Telefon

Omkring
Udlan

Factoring

+ Tilfoj Vitterlighedsvidner
+ Tilfoj kautionist

Laneberegning Priser for privat er inkl. moms
Udbetaling Procentdel Finansieringsrente
ke | @® 20,10 % %
Lebetid Rentetype Udbetalingsdato
84 md Variabel . 05-09-2017 &
[]

Detaljer for anseger Lisbeth Storgaard u I I l

Antal personer i husstanden® Boligforhold®
v Voksne Barn Vaelg- v
Stilling*
-
Indkemst efter skat® Brutto husleje™® Radighedsbelob™®
kr/md kr./md kr/md

Har eksisterande/tidligere 13n til bil, mc eller campingvogn

Afdeling Reg nr. Kontonummer

Anseger ensker digital signering af dokumenter

E-mail 5MS
Indlan Investering Forsikring
Pension

Dit lan

Ménedlig ydelse
Udbetaling i alt

Totalt lEnebehov
AOP
AOP efter skat

Udbetalingsdato
1. forfaldsdato
Udlebsdato

Omkostninger i alt

Ansoger

Navn
Addresse
Postnummer

By

Telefon
E-mail

CPR
Karekort nr.

%

05-09-2017
01-11-2017
01-10-2024

kr

Lisbeth Storgaard

90897867
lisbeth@storgaard.dk

13

Figure 2-2: Case plugin

The system is intended to support entry of Finance and Insurance details pertaining to the specific Application
(Brand and Product) the Dealer has selected and work within the confines of Bilinfo.net. As such, any necessary

information needed by the Plugin Implementer, must be defined and communicated conforming to internal
information requirements.

It is recommended that the implementing party incorporates a user experience similar to that of Bilinfo.net in
general. However, understandably, the visual feel in terms of applied color scheme may be different to that of
Bilinfo.net to better indicate the Plugin Implementer with which the Application is made.

14

3. Prerequisites

This chapter describes the preliminary information and tasks you should get under way before starting any
development on the Plugin Server-Side and the Plugin as a whole. These tasks are dependent on external
parties and may take some time to complete.

3.1 Security
All Bilinfo Shared Services use SSL/TLS (HTTPS) and OAuth 2.0 for Authorization. Additionally, the Case Plugin
must authenticate itself with Bilinfo.net via Single Sign-On.

3.2 Separate environments
Two instances of the Plugin Server-Side should be available, one for Production and one for QA.

3.3 Onboarding

The integrating party must contact Bilinfo.net to start the onboarding process. In onboarding, infrastructural
information pertaining to the integration is exchanged.

For the Case Plugin integration a number of elements have to be aligned. The onboarding activities include:

® Registration of SSO and OAuth 2.0 integrations covered in the Bilinfo Auth Services (Integration)
document.
Exchange URI’s and paths for Partner Brands & Products API in Bilinfo.net
Retrieve plugin implementer identifier URIfor Application Status API callback

15

4. Plugin Server-Side

This chapter will cover the Plugin Server-Side components that must be implemented in order to enable
integration of a third party Plugin into Bilinfo.net.

4.1 Brands & Products API

The Brands & Products APl is the primary component of the Plugin Server-Side and assists the Bilinfo.net site in
loading the Plugin correctly. The APl is used to present the User with a list of Brands and Products he can use to
finance or insure the current vehicle on the Case. Once the User chooses a Brand and Product combination, a
Plugin URL is used to load the Plugin Client-Side within an iframe.

The initial create new offer interaction described above can be seen in Figure 4-1. Once created Bilinfo.net
saves the Plugin URL of the offer and will reuse it for future reloads of it. This subsequent load can be seen in
Figure 4-2.

-User :Host :Host :Plugin :Plugin
g% . server-side client-side client-side server-side

T
Add new offer

T

|

|

|

l .

| Get available brands and
| products

Get Brands&Products

Receive Brands&Products

|________ ———L

Brands&Products

|
|
|
|
|
|
|
|
I
| Receive all available
|
|
|
|
|

a
Display all availabl# Brands&Products
}

.

Choose brand and product Load Plugin for chosen brand and product

»
L

Bilinfo Single Sign-On

|
|
|
|
I
Load Plugin
]
|
|
|
|
|
|
!

____________{

Figure 4-1: Create new offer interaction

16

:Host :Host :Plugin :Plugin

g o server-side client-side client-side server-side
T T T T
—		
Load case		

Load case I I
| |
I |
Send case information ILoad Plugin (using reference) L
|
Once an offer is Load Plugin I
created, the |
pluginUrlissaved | |
and used on I I
subsequent loads | | - . —
of the offer I I Bilinfo Single Sign-On
I [
I I
| ——— |
I [
! !

_—
|
|

Figure 4-2: Load existing offer interaction

Note, that in both Figure 4-1 and Figure 4-2 a Single Sign-On (SSO) is negotiated with the Bilinfo Authentication
Server. This step is described in further detail in chapter 5.

Further information regarding the Brands & Products specification can be found in the Bilinfo Brands and
Products (Integration) found in 1.2 References.

17

5. Plugin Client-Side

The Plugin Client-Side refers to the web-based User Interface (Ul) produced by the HTML, JavaScript and CSS
elements provided by the Plugin Backend. It is displayed on the Bilinfo.net site via an iframe.

Bilinfo.net LOX

Other offer Plugin -

Customer

Car

TradelnCar
Calculation

Finance & Insurance

Insurance IFramed Plugin area

Figure 5-1: Case Plugin

This chapter covers the interactions available to the Plugin Client-Side within the Host Client-Side context. Each
section found in this chapter pertains to a portion of the implementation needed to interact with Bilinfo. Any
interaction with the Plugin Backend is out of scope of this document.

5.1 Security

Before the Plugin is shown to the user, the Plugin must negotiate Single Sign-On with the Bilinfo Authentication
Server. The Plugin must not prompt the user for signing in, it should instead trust Bilinfo to confirm the logged
user identity. The user identity is established using the OpenlID Connect protocol. Therefore, upon starting up,
the Plugin should only grant a session after it has successfully established the user identity.

18

Figure 5-2 shows how the authentication using SSO specified in Bilinfo Auth Services (Integration) document is
performed within the context of Bilinfo. Out of the box, the Bilinfo Authentication Service supports
Authorization Code and Implicit flow. The Plugin developer can choose the flow it desires to implement;
however, since it offers a higher degree of protection, Authorization Code is preferred.

-User :Host :Host :Plugin :Plugin
g . serverside client-side client-side serverside

Get Plugin (URL from Brands&Products API)

Redirect (302) to Bilinfo Auth Endpoint

|._________

Follows the redirect (302)
< 1
1
1
L 1
i i
Redirect (302) to — Follows the redirect (302) -
redirect_uri including code »
T
1
1
1
.
se code and credentials tq obfain id_token
Send id_token
» Decode the id_token
: Plugin User Interface : and authenticate user
I < .

._________________|

re]
._____________.I

Figure 5-2: Single Sign-On Authorization Code flow

Explaining the OpenlD Connect protocol is outside the bounds of this document. However, meaningful
information about the supported flows and test credentials may be found in the Bilinfo Auth Services
(Integration) document.

The protocol revolves around a third party obtaining an id_token and optionally an access token. The
id token is a self-standing JSON Web Token describing the identity of a user (claims). Furthermore, the
access_token can be used later on to obtain more detailed information about the user.

The id token will contain claims about the current user in accordance with the scopes requested by the
client. Table 5-1 shows a list of accessible scopes along with their associated claims.

19

Table 5-1: id_token claims

Scope Claims Included in Description
id_token
openid sub yes User identifier (e.g.: clazar@ebay.com)
profile name yes User full name (e.g.: Cosmin Constantin Lazar)
userld yes User id in Bilinfo.net (e.g.: 1253)
dealer dealerId yes Dealer Id in Bilinfo.net (e.g.: 42304136-FDCA-DF11-
9E98-0025B3E6B7D8)
bilinfoDealerId | yes Dealer Id in Bilinfo Program (e.g.: 100)
email email yes User email (e.g.: clazar@ebay.com)

Communication with the Bilinfo Authentication and Authorization Server, Bilinfo Shared Services, or between
the Plugin and its server-side counterparts shall always take place over a secure connection (TLS).

Please note that most programming languages have libraries that you can use to access and validate tokens. A
non-exhaustive list of libraries for various programming languages may be found at the OpenlD Connect
developers site®. Furthermore, if the library supports automatic configuration, you can use the OpenID
configuration endpoint https://www.bilinfo.net/oauth/.well-known/openid-configuration.

5.1.1 Content Security Policy (CSP)

The Plugin Client-Side is loaded within an iframe context. A Content-Security-Policy (CSP) header is set up in
Bilinfo.net, which will reject all non-https communication. As such, HTTPS is mandatory when providing Case
Plugin static files and API calls.

It is strongly recommended that the Case Plugin uses CSP headers in turn to best protect their iframe solution
from being used in unexpected ways.

The Content-Security-Policy frame-ancestors® directive may be used to assert access only from

o https://www.bilinfo.net
e https://www.qa01.bilinfo.net

Content-Security-Policy: frame-ancestors https://www.bilinfo.net https://
www.qafl.bilinfo.net;

5.1.2 X-Frame-Options
Given that the Content-Security-Policy header is primarily supported in modern versions of major browsers, we
recommend also using the X-Frame-Options® header to enable controlling requests on older browsers.

® http://openid.net/developers/libraries/

* https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
> https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

20

mailto:clazar@ebay.com
mailto:clazar@ebay.com
https://www.bilinfo.net/oauth/.well-known/openid-configuration
https://www.bilinfo.net/
https://www.qa01.bilinfo.net/
http://openid.net/developers/libraries/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

Again, allow access from

o https://www.bilinfo.net
e https://www.ga01.bilinfo.net

X-Frame-Options: allow-from https://www.bilinfo.net https://www.qga®l.bilinfo.net;

Please avoid using the meta tag when applying this, but rather put it in the HTTP response header.

5.2 Handling the reference

When loading the Plugin, the Host will generate a unique identifier and pass it to the Plugin by appending a
“reference” query string parameter to the plugin load URL, e.g.
https://example.com/plugin?reference=1234abcd).

The Plugin should save the provided reference and supply it in the header section of all the messages it sends
to the Host. The Host will also supply the plugin reference in the header of all the messages it sends. It is
recommended — though not necessary — that the client validates against it. How the reference is passed to the
Host is described in further detail in the Messaging section.

The Host will reuse the reference on each subsequent re-initialization of the Plugin. This means that the
identifier may be used for saving or reloading instance-specific user data or provide other meaningful instance-
specific information back to the Plugin Backend. This is not mandatory, but may enrich the data available to the
Plugin Implementer and improve the overall user experience using the Plugin.

Note: During the load sequence described in the Handshake section, the Plugin needs to authenticate the
current user by using the Bilinfo Single Sign-On sequence. Performing this authentication will result in a series
of redirects, through which it is important that the Plugin keep a hold of the reference that was supplied during
these redirects.

5.3 User Interface
This section describes certain guidelines, which should be considered, when developing a Case Plugin to be
hosted within the Bilinfo user interface.

The following guidelines may be considered:

- Screensize
o Heightis unbound
o Width

= Whenin full screen: 1184, afterwards 900

* iPad landscape: 733
Modal and errors: The Plugin is encouraged to use its own screen space to provide meaningful errors
Printing
Bookmarks

21

https://www.bilinfo.net/
https://www.qa01.bilinfo.net/

- Top navigation — will be disallowed — the plugin can only control its own iframe and will not be able to
set top window navigation (aka will not be able to change the address of the current page, opening
links in new tabs/windows will probably be allowed)

5.4 Messaging

The communication between the Host Client-Side and Plugin Client-Side is done using the HTML5
Window.postMessage () infrastructure as it allows safe cross-origin communication. You can read more
about sending and receiving messages at Mozilla Developer Network (MDN) web docs®. The communication
protocol will be versioned according to Semantic Versioning rules’.

The two parties (Host and Plugin) will exchange data by posting messages to each other. The posted messages
are required to follow the structure defined in the ApplicationMessage section. After sending an
ApplicationMessage, the browser will wrap the message into a MessageEvent and deliver it to the
intended destination.

5.4.1 MessageEvent

To enable safe data transfer from one frame to another, browsers automatically encapsulate all sent messages
in a MessageEvent.

For the purpose of this integration, only the properties seen in Table 5-2 are required. An example can be seen
in Listing 5-1.

Table 5-2: MessageEvent properties

Property name Description
Origin The scheme, hostname and port of the document sending the message
Data The payload of the message, which in our case, is an ApplicationMessage
{
"origin": "https://www.bilinfo.net/",
"data": { ...ApplicationMessage... }

Listing 5-1: MessageEvent example

One should think of MessageEvent as a Transport Layer, enabling security validation and payload carry. The
security part is described in further detail in the Security section.

5.4.2 ApplicationMessage
An ApplicationMessage contains the protocol specific data exchanged between the Host and Plugin. The
message is composed of two mandatory parts: a Header and a Body.

® https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
7 http://semver.org/

22

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
http://semver.org/

Header
The Header is a mandatory part of a message containing general-purpose information. Table 5-3 shows the
mandatory properties for an ApplicationMessage.

Table 5-3: ApplicationMessage header properties

Property name Description

Type A protocol-specific string identifying the data type contained in the body

Version The protocol version the Plugin desires to use throughout the communication

reference The reference query string parameter specified by the Host when loading the Plugin
Body

The Body is a mandatory part of a message containing actual application data, according to the type specified
in the header. Listing 5-2 shows an example of a handshake request enveloped in a MessageEvent.

{

"origin": "https://www.bilinfo.net/",
"data": {
"header": {
"type": "handshake.request",
"version": "1.0.0",
"reference": "1234"
} 4
"body":{ }
}
}
Listing 5-2: ApplicationMessage embedded in MessageEvent
5.5 Security

Security procedures need to be employed by the Host and Plugin when sending and receiving data, according
to the following. This section will cover the security measures that must be adhered to when sending and
receiving data to and from the Host.

5.5.1 Sending data
Sending data is achieved through a Window.postMessage call as seen in Listing 5-3. The properties can be
seen in Table 5-4.

window.postMessage (message, targetOrigin, [transfer]);

Listing 5-3: Sending data example

Table 5-4: window.postMessage parameters

window The window the message should be dispatched to.

From the Host perspective, this is the Plugin iframe.

From the Plugin perspective, this is the Host window (which can be obtained through
window.parent property)

message An ApplicationMessage —the browser will automatically wrap itin a MessageEvent

targetOrigin | To whom this message should be sent

23

From the Host perspective, this is the URL used to load the Plugin
From the Plugin perspective, this should always be https://www.bilinfo.net

transfer Optional parameter, not used

It is paramount always to specify the targetOrigin, when posting a message, as this is the only way to
authenticate the receiving frame. Specifying “*” as the targetOrigin in production is forbidden, as it will
cause the browser to post messages to any frame, regardless of origin.

5.5.2 Receiving data
Receiving data is achieved by subscribing to the “message” event. An example can be seen in Listing 5-4.

window.addEventListener ("message", receiveMessage, false);

function receiveMessage (event)

{

//perform security checks

}

Listing 5-4: Receiving data example

The receiveMessage event handler will be called with a MessageEvent parameter. Upon receiving a
message, the receiving party should always:

- Checkthe origin attribute of the event to authenticate the sender

- Perform input validation on the data attribute to ensure it’s in the desired format, i.e.
ApplicationMessage.

- Check the origin properly exactly to match the FQDN(s) you expect. Note that code such as that found
in Listing 5-5 leads to very imprecise matching and may result in insecure data reception. Consider that
an origin “www.owasp.org.attacker.com” would result in a positive match.

if (message.orgin.indexOf (".owasp.org") !=-1){
/* ... %/
}

Listing 5-5: Insecure Fully Qualified Domain Name (FQDN) check example

Additionally, even after receiving a message from an authenticated origin, it is of good practice to never
evaluate the received messages as code by using e.g. eval () or DOM insertion via innerHTML. Doing so, will
enable Cross-site scripting (XSS), which may have a severe impact on both Bilinfo.net and the Plugin Backend
and any related subsystems.

You can read more about security recommendations when doing web messaging at the Open Web Application
Security Project (OWASP) website®.

8 https://www.owasp.org/index.php/HTML5_Security Cheat Sheet#Web Messaging

24

http://www.owasp.org.attacker.com/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Web_Messaging

5.6 Handshake

The handshake procedure — seen in Figure 5-3 — ensures that both parties are fully loaded and agree upon
what protocol specification version they are going to use. The Plugin should wait for the completion of the
handshake procedure before becoming available for user interaction. A loading indicator or spinner should be
displayed until completion.

:Host
serverside

:Host
client-side

:Plugin
client-side

:Plugin
serverside

T T
1 |
L) i
\ handshake. request

|-

|-}

cmmmnee]

Qandshake.response

byt
|
|
|
1
|
|
1
|
|
1
|

Figure 5-3: Handshake interaction

The Plugin will initiate the handshake procedure, specifying the highest protocol version it supports. The Host
will then accept or reject the handshake request. For instance, a handshake request can be rejected if the
version specified by the Plugin is not supported by the Host

The protocol is versioned according to Semantic Versioning guidelines. This means that only changes to the
major component of the version (e.g. going from 1.0.0 to 2.0.0) will not be backwards compatible. Changes to
the minor (e.g. 1.0.0 to 1.1.0) and patch (e.g. 1.0.0 to 1.0.1) component will always be backwards compatible.
Consequently, during the handshake protocol, the two parties should agree on the major version component.
As an example, it is valid for the Host to use version 1.2.3 while the Plugin uses 1.0.0.

The Plugin should always specify the version using all three components and not use any pre-release specifiers.
Please refer to the guidelines specified in Table 5-5.

Table 5-5: Plugin handshake version request guidelines

Version Is valid
1.0.0 Yes
1 No
1.0 No
1.0.0-beta No

25

The handshake sequence follows the steps illustrated below:

1. The Host will load the Plugin specifying the reference query string parameter
2. The Plugin will send a Handshake Request Message
3. The Host will send a Handshake Response Message

Host will tolerate multiple handshake requests from the same Plugin, successfully accepting all of them if they
are valid. Therefore, when implementing the handshake sequence, the Plugin developer can use the
setInterval function to request a handshake until it receives an acceptance from the Host. Please
remember to cancel the interval once you received a handshake acceptance/rejection.

5.6.1 Handshake Request Message
The Handshake Request Message specification and example can be seen in Table 5-6 and Listing 5-6 respectively.

Table 5-6: Handshake request message specification

Location Name Description
type Hardcoded to “handshake.request”
version The protocol version used by the Plugin
reference The reference query string parameter specified by the

Host when loading the Plugin
body This message has an empty body
Example
{
"header": {
"type": "handshake.request",
"yversion": "1.0.0",
"reference": "1234abcd"
},
"body":{ }

Listing 5-6: Handshake request message example

26

5.6.2 Handshake Response Message

The Handshake Response Message specification can be seen in Table 5-7. Example responses can be seen in
Listing 5-7 and Listing 5-8 for successful and failed handshakes, respectively.

Table 5-7: Handshake response message specification

Location Name Description
header type Hardcoded to “handshake.response”
version The protocol version used by the Host
reference The reference query string parameter specified by the
Host when loading the Plugin
body status The result of the handshake attempt.
Possible values are:
“ok” —successful handshake
- “rejected” —failed handshake
reason In the case of rejected handshakes

Successful handshake

{
"header": {
"type": "handshake.response",
"version": "1.2.3",
"reference": "1234abcd"
},
"body": {
"status": "ok"
}
}
Failed handshake
{
"header": {
"type": "handshake.response",
"version": "9.2.3",
"reference": "1234abcd"
},
"body": {
"status": "rejected"
"reason":
}
}

27

Listing 5-7: Successful handshake response message

"version not specified or not supported"

Listing 5-8: Failed handshake response message

5.7 Data exchange interaction
This section will cover the data and message exchanges between the Host and Plugin — after a successful
Handshake has been performed. Figure 5-4 shows the typical data exchange flow between the Host and Plugin.

-User :Host :Host :Plugin :Plugin
g' serverside client-side client-side serverside

T T
I I
I I
I I
User interacts with the Ul h.l.@ i
» I
——
case.daia N .
» MNew calculation request
New calculation response
finance. data -

-

_ Update overview pane

._______________|
.__________________|

Figure 5-4: Data exchange interaction

The Host will send updates to the Plugin in real-time and the Plugin via the data.case message. The Plugin is
expected to report information back to the Host in real-time via the finance.data message. The message
finance.data is only for finance and leasing, other services like insurance are not expected to send data
back.

5.7.1 Input (Host-to-Plugin)

Input defines the data the Host will send to the Plugin. The Plugin does not have VETO power® towards
accepting or denying the data sent by the host. However, in the case of invalid data, the Plugin may choose to
display an error message to the user via its own user interface.

All the Case data will be sent to the Plugin via a single message containing information about the Customer
(PrivateCustomer or BusinessCustomer), Car and TradeInCar.

Subsequent updates to the Case — performed either by the user via updates or automatically via recalculations
— will result in the Plugin receiving a new message containing information about all the entities, not just the
modified ones. This means that the Plugin can always consider the last received message as the “source of
truth”.

° Power or ability to unilaterally stop an official action (la. "l forbid")

28

There are no guarantees about the minimum amount of data the Host will send to the Plugin. This is because
data is being sent to the Plugin as the user enters it. Therefore, the Plugin should be able to deal with missing
fields, or fields initialized with null or empty string.

Case specification message
Table 5-8 shows the specification for the data.case message sent from the Host to the Plugin. In essence, this
specification body may be read as the root type, with each subtype — and their respective subtypes — specified

in the following subsections.

Table 5-8: Case data message specification

Location Name Description
header type Hardcoded to “data.case”
version The protocol version used by the Host
reference The reference query string parameter specified by the Host when
loading the Plugin
body caseld Uniquely identifies the case this Plugin is part of
viewUrl A url that can be used to navigate to the case hosting the Plugin
isActive A boolean describing whether the Plugin is marked as active by the
user (Anvend pa sag)
Customer An object representing a PrivateCustomer or a BusinessCustomer
car An object representing a Car
tradeInCar An object representing a TradelnCar
businessUsers An object representing BusinessUsers (only if customer is business)

29

PrivateCustomer
Table 5-9 shows the specification for the PrivateCustomer variant of the customer field of the Case
specification message. An example can be seen in Listing 5-9 on Page 31.

Table 5-9: PrivateCustomer data specification

Field Type Description
type string Hardcoded to “private” for private customers
info object Object of type PrivateCustomer
coApplicant object Object of type CoApplicant

PrivateCustomerinfo
Table 5-10 shows the specification for the PrivateCustomerinfo type, member of the PrivateCustomer type.

Table 5-10: PrivateCustomerinfo data specification

Field Type Description Example

firstName string “John”

lastName string “Doe”

street string “Axel Kiers Vej”

streetNumber string “11”

zipCode number 8270

city string “Hgjbjerg”

country string “Denmark”

email string “private@email.com”

cellphone string Mobile phone “86112233”

coOrAtt string

cpr string “0101870006”

phone string Landline phone “86112233”

driverLicenseNumber | string Driver license number “12345678"
CoApplicant

Table 5-11 shows the specification for the CoApplicant type with example values, member of the
PrivateCustomer type.

Table 5-11: CoApplicant data specification

Field Type Description Example
firstName string “Ilohn”
lastName string “Doe”
street string “Axel Kiers Vej”
streetNumber string “11”
zipCode number 8270

30

mailto:private@email.com

city string “Hgjbjerg”

country string “Denmark”

email string “coapplicant@email.com”
cellphone string Mobile phone “86112233”

coOrAtt string

cpr string “0101870006"

phone string Landline phone “86112233”
Example

Listing 5-9 below shows an example of the PrivateCustomer variant of the customer type. This is a part of the

overall Case specification message received by the Plugin from the Host.

"customer":
"type" :
"info":

"firstName":

{

"private",

{

"lastName": "Lazar",
"cpr": "2510871212",
"street": "gade",
"streetNumber": "1",
"city": "Aarhus N",
"zipCode": ,
"country": "denmark",

"cellphone":

"coOrAtt": null,
"phone": "21212121"

b,

"coApplicant": {

"firstName": "Cosmin2”,
"lastName": "Lazar2",
"cpr": "2510871212",
"street": "gade",
"streetNumber": "1",
"city": "Aarhus N",
"zipCode": p
"country": "denmark",
"cellphone": "21212121",

"coOrAtt": null,
"phone": "21212121"

"Cosmin",

"21212121",

31

Listing 5-9: Case data message example

mailto:coapplicant@email.com

BusinessCustomer
Table 5-12 shows the BusinessCustomer variant of the customer field of the Case specification message.

Table 5-12: BusinessCustomer data specification

Field Type Description
type string Hardcoded to “business” for business customers
info object Object of type BusinessCustomerInfo
decisionMaker object Object of type DecisionMaker

BusinessCustomerlinfo
Table 5-13 shows the specification for the BusinessCustomerinfo type, member of the BusinessCustomer type.

Table 5-13: BusinessCustomerlInfo data specification

Field Type Description Example
companyName string “Ebay Classifieds”
companyType number Value from CompanyType 1
street string “Axel Kiers Vej”
streetNumber string “11”
zipCode number 8270
city string “Hgjbjerg”
country string “Denmark”
email string “business@business.com”
phone string Landline phone “86112233”
cellphone string Mobile phone “86112233”
coOrAtt string
cvr string “20618175"

CompanyType

Table 5-14 shows the specification for of the CompanyType identifier, member of the BusinessCustomerinfo
type.

Table 5-14: CompanyType data specification

Value Type Description
0 number Unknown
1 number A/S
2 number ApS
3 number Enkeltmandsvirksomhed
4 number 1/S

32

mailto:business@business.com

DecisionMaker
Table 5-15 shows the specification of the DecisionMaker type, member of the BusinessCustomer type.

Table 5-15: Decision maker data specification

Field Type Description Example
firstName string
lastName string
title string
phone string
cellphone string
email string
Car

Table 5-17 shows the specification of the Car type found in the car field of the Case specification message.

Table 5-17: Car data specification

Field Type Description Example
isFactoryNew boolean
dbiIld number
modelCatalogueld string Modelcatalogue 893757B3-E30B-
identifier CE26-681C-
08CF06294F34
type number Value from CarType 1
make string
model string
variant string
modelYear number
numberOfDoors number
mileage number
motor string
color string Black
fuelType number Value from FuelType 2
kmPerLiter number
registrationNumber string
registrationDate string String representing an 2015-08-
ISO 8601 date 31T22:00:00.000Z
ownWeight number 1600
deliveryCost number Delivery cost ex. vat 2080
deliveryCostVat number Vat of delivery cost 520
licensePlateCost number Price for the license plate | 1180

33

dealerEquipments array Array of
DealerEquipment
factoryEquipments array Array of
FactoryEquipment
listPrice object Object of type Price List price from DBI
salesPrice object Object of type type Price | Sales price on the
case
vin string
kmWaranty boolean | Relevant for used cars, a
warranty that the car’s
mileage hasn’t been
tampered with
discount number Discount ex. vat 8000 (for a total
discount of 10000)
discountVat number Discount vat 2000 (for a total
discount of 10000)
timingBeltReplaced number Value from 2
TimingBeltReplaced
serviceBook boolean | Relevant for used cars, True
null otherwise
serviceBookEnum number Value from ServiceBook 1
toldAndSkatVariant string The ts_variant
information — as supplied
by DBI — only applies to
new cars
ownerTaxPerYear number Represents the value of 3200
Weight tax, Green tax or
CO2 tax
effect number Horse power 200
cashPricelInclvVat number Car total price (discount
detracted) including
dealer- and factory
equipment, delivery cost
and license plate cost,
and registration fee.
Always including VAT
numberOfAirbags number Number of Airbags 2
numberOfIntegratedChildSeat number Number of ChildSeats 2
numberOfSeatBeltAlarms number Number of Seatbelt 2
alarms
euroNcapTopRated boolean | 5starsin EuroNCap true

(toprated)

34

totalWeight number Total weight of the car 1500

in kg

hasRadio boolean [Does the vehicle have true
radio

hasABS boolean | Does the vehicle have true
abs brakes

hasESP boolean | Does the vehicle have false
ESP

isVatPaid boolean | Hasthe vat onthe true
vehicle been paid

isTaxPaid boolean | Has the registration tax false
been paid

approvedKmPerLiterMeasurementType | string Which method has been NEDC1
used for measuring
kmPerLiter WLTP,
NEDC1, NEDC2

approvedKmPerLiter number | WLTP or NEDC value for
KmPerlLiter

CarType
Table 5-18 shows the specification of the CarType type, member of the Car and TradelnCar types.

Table 5-18: CarType data specification

Value Type Description
1 number PrivateCar
2 number VanExVat
3 number VanlInclVat
7 number Bus
5 number Camping Bus
6 number Caravan (No engine)
7 number Motorcycle
FuelType

Table 5-19 shows the specification for the FuelType identifier, member of the Car and TradelnCar types.

Table 5-19: FuelType data specification

Value Type Description
0 number Unknown
1 number Gasoline
2 number Diesel
3 number Electric

35

Price

Table 5-20 shows the specification for the Price type, member of the Car and FactoryEquipment types.

Table 5-20: Price data specification

Field Type Description Example
costPrice number Cost price ex. vat, profit and 80499
registration fee
vat number 22137
profit number Dealer profit ex. vat 8050
registrationFee number 82382
taxableAmount number
DealerEquipment
Table 5-21 shows the specification for the DealerEquipment type, member of the Car type.
Table 5-21: DealerEquipment data specification
Field Type Description Example
description string Telefonholder
vat number 500
costPrice number Value ex. profit and ex. vat 1000
profit number Value ex. vat 1000
code string Dealer assigned identifier RSO1
FactoryEquipment
Table 5-22 shows the specification for the FactoryEquipment type, member of the Car type.
Table 5-22: FactoryEquipment data specification
Field Type Description Example
description string Fartpilot
code string Dbi code RS02
listPrice Price
salesPrice Price

36

TimingBeltReplaced
Table 5-23 shows the specification for the TimingBeltReplaced type, member of the Car and TradelnCar types.

Table 5-23: TimingBeltReplaced data specification

Value Type Description
0 number Unknown
1 number Yes
2 number No
3 number NoTimingBelt

ServiceBook
Table 5-24 shows the specification for the ServiceBook type, member of the Car and TradelnCar types.

Table 5-24: ServiceBook data specification

Value Type Description
number NotFilledOut
number FilledOut

2 number PartiallyFilledOut

TradelnCar
Table 5-25 shows the specification of the TracelnCar type found in the tradeInCar field of the Case

specification message.

Table 5-25: TradelnCar data specification

Field Type Description Example
registrationDate string | String representing an ISO 2015-08-
8601 date 31T22:00:00.000Z
type number | Value from CarType 2
make string Citroén
model string Cc1
variant string Sport
color string Black
kmWaranty boolean true
timingBeltReplaced number Value from 2
TimingBeltReplaced
timingBeltReplacedAtMileage | number 25000
timingBeltReplaced string | String representing an ISO 2015-08-
8601 date 31722:00:00.000Z
serviceBook boolean true

37

serviceBookEnum number | Value from ServiceBook 1

majorDamages number | Value from MajorDamages 0

registrationNumber string AB22333

vin string LKFG3423432345674

modelYear number 2010

fuelType number Value from FuelType 3

latestMotDate string | String representing an ISO 2015-08-

8601 date 31T722:00:00.000Z

mileage number 50000

costPrice number 20000

vat number 0

remainingDebt number 5000

financedAt string Jyffi

isVatFree boolean False

comment string Comment about the car
MajorDamages

Table 5-26 shows the specification for the MajorDamages identifier, member of the TradelnCar type.

Table 5-26: MajorDamages data specification

Value Type Description
number No
number Yes
2 number Unknown

BusinessUsers

Table 5-27 shows the specification of the businessUsers field of the Case specification message.

Table 5-27: BusinessUsers data specification

Field Type Description Example
businessUserl BusinessUser Object of type BusinessUser
businessUser2 BusinessUser Object of type BusinessUser

38

BusinessUser

Table 5-28 shows the specification for the BusinessUser type.

Table 5-28: Business user data specification

Field Type Description Example

firstName string “John”
lastName string “Doe”
cpr string “0101870006”
driversLicenseNumber | string “10557254”
street string “Axel Kiers Vej”
streetNumber string “11”
zipCode number 8270
phone string Landline phone “86112233”
mobilePhone string Mobile phone “86112233"
email string “bruger@email.dk”
city string “Hgjbjerg”
country string “Denmark”
gender number Value from Gender 1

Gender

Table 5-29 shows the specification for the Gender identifier, member of the BusinessUser type.

Table 5-29: Gender data specification

Value Type Description
number Unknown
1 number Male
2 number Female

39

mailto:coapplicant@email.com

5.7.2 Output (Plugin-to-Host)
Output defines the data Host will receive from Plugin.

Finance specification message

In case of loan offers, the Plugin should publish a loan specification message after each calculation. Table 5-30
and Table 5-31 show the specification for the Finance specification message. This message is only for plugins
that offer either finance or leasing.

Table 5-30: Finance specification message

Location Name Description
header type Hardcoded to “finance.data”
version The protocol version used by the Host

reference | The reference query string parameter specified by the Host when
loading the Plugin

body Details description of the fields can be found Table 5-28.

Table 5-31: Finance specification data message fields

Field Type Description Example
downPayment number Including VAT
profit number Dealer profit
monthlyPayment number Loan and leasing.
endDate string String representing an 1SO 8601 2015-08-

date loan and leasing 31T22:00:00.000Z

residualValue number leasing
interest number loan (rente)
anualExpensesPercentage | number (AOP) loan
financeExpenses number (finansieringsomkostninger) loan

The host will send a protocol error message if the Plugin submits an invalid Finance specification message

40

Case update message

The Plugin sends the case.update message to inform the Host about Server-Side changes to the application.
Receiving a message of this type will cause the Host to do a server-side call to reload the offer/application
details. This message is for all types for services, finance, leasing, insurance etc.

Table 5-32 shows the specification for the Case update message.

Table 5-32: Case update message

Location Name Description
header type Hardcoded to “case.update”
version The protocol version used by the Host
reference | The reference query string parameter specified by the Host when
loading the Plugin
body Empty body

Please note that this is a crucial part to integration between Bilinfo and the Plugin, which enables Bilinfo to
display up-to-date information regarding the status of the Application. This interaction is described in further
detail in the Application interaction section.

41

5.8 Save interaction

The Save interaction may be triggered at any time from Bilinfo to save information to a Case. In order to save
any information pertaining to the Plugin, a “save.request” message is sent to the Plugin by the Host in the
event of a user action. Figure 5-5 shows the Save interaction.

g :User

:Host :Host :Plugin :Plugin
serverside client-side client-side serverside
T T T T
I I I I
I) I I I
: User clicks save =]_l_ : :
I I I
: Auto-save : :
]] Begin save] I
I I = I I
I I I I

Save request — : :
] Save request
Save result i |
] I_/I save. request
: » o Save result
I
| 1
I
: b save.response
! +
I
I
Il

Present save operationl result

_______|;|_____________________|:|__

Save request message
The Bilinfo Case contains transient information until the user decides to persist it by clicking the save button.

An automatic save can also occur when a set of preconditions are met. It is therefore important for the Plugin
to follow the lifecycle of the Case and save/discard changes at the same time.

Figure 5-5: Save interaction diagram

After issuing a save request, the Host will wait for the Plugin’s acknowledgement for a maximum of 3 seconds.

Table 5-33 shows the specification for the Save request message.

Table 5-33: Save request message

Location Name Description
header type Hardcoded to “save.request”
version The protocol version used by the Host
reference The reference query string parameter specified by the
Host when loading the Plugin

42

body

The save command has an empty body

Save response message

If the Plugin replies within the allotted timeout, the Host will notify the user upon the success/failure of the
save. Alternatively, if the Plugin does not reply within the allotted timeout, the Host will proceed as if it
received a successful acknowledgement.

Table 5-34 and Table 5-35 respectively show a successful or failed save response from the Plugin to the Host.

Successful save
Table 5-34: Successful save response message

Location Name Description
header type Hardcoded to “save.response”
version The protocol version used by the Host
reference The reference query string parameter specified by the
Host when loading the Plugin
body status “ok”
Failed save
Table 5-35: Failed save response message
Location Name Description
header type Hardcoded to “save.response”
version The protocol version used by the Host
reference The reference query string parameter specified by the
Host when loading the Plugin
body status “fail”
reason Reason for failure

43

5.9 Application interaction
It is important for both systems to be kept in sync when the user decides to make an Application. Therefore, an
Application should not be considered submitted until the Host has been notified via a Server-Side call. Once the
application is submitted, the Plugin is expected to send a case.update message as described in section 5.7.2.

Figure 5-6 shows the Application interaction from initial User (i.e. Dealer) application through to the
intercommunication between the Plugin Server-Side and Host Server-Side and subsequent Plugin Client-Side to
Host Client-side case.update message.

g ‘User

:Host
server-side

User clicks apply

‘Host ‘Plugin
client-side client-side
I T
| |
| @ I
| |

-
data.case

T

—

:Plugin
server-side

I

|

|

|

|

|

|

|

|

|

I
—
Begin apply

Report status change

Acknowledge status change

Get status info

rI,_______ R I,

_—
|
|
|
|
|
|
|
|
|
|
|

Finish apply

Send status info

I: case.update | |‘

-
|
|
|
|
|
|
|
|
|

Figure 5-6: Application interaction

Please note that the Plugin should only allow the user to apply when the isActive field, received in the
data.case message, is true.

For more information regarding the Application Status changes, the reader is referred to the Application Status

API section.

44

5.10 Other Messages
This section covers the messages that are not associated with any given interaction.

5.10.1 Protocol Error message
The Protocol Error message is sent by the Host if the Plugin does not adhere to the protocol specification. Table

5-36 shows the specification of the Protocol Error.

Table 5-36: Protocol Error Message specification

Location Name Description
header type Hardcoded to “protocol.error”
version The protocol version used by the Host
reference The reference query string parameter specified by the
Host when loading the Plugin
body message A string describing the error
Listing 5-10 shows an example Protocol Error message.
{
"header": {
"type": "protocol.error",
"version": "1.0.0",
"reference": "1237"
by
"body": {
"message": "invalid reference, expecting reference 1237"

}

Listing 5-10: Protocol Error message example

Errors that may be conveyed through this message include:

- Plugin sends a malformed message (missing header or body)
- Plugin specifies an invalid reference

45

6. Host Server-Side Services

This chapter will cover the Case Plugin Architecture related services that should be used to complete the Case
Plugin integration loop by e.g. reporting Application Status back to Bilinfo from their Plugin Backend.

6.1 Application Status API
To complete the feedback loop between the Plugin and Bilinfo backend, application status reports must be
supplied to the Application Status API. This section describes the APl interface and specification.

6.1.1 Base path

Each Plugin Implementer is assigned a dedicated endpoint with a dedicated set of claims required for calling
the API. Please note that the examples seen in Table 6-1 include @ ”{plugin implementer identifier}”
placeholder in various locations. You must replace this placeholder with the identifier allocated upon the initial
registration process.

Table 6-1: Bilinfo service base path

Environment Endpoint
QA https://gw.gal0l.bilinfo.net/{plugin implementer identifier}/api/v2
Production https://gw.bilinfo.net/{plugin implementer identifier}/api/v2

6.1.2 Endpoints

The following section iterates through the endpoints available in the Application Status API. Each endpoint has
a specific path, which must be appended to the base path, and must be requested using a scope Bearer token
as specified in Section 3.1.

ApplicationStatus
The ApplicationStatus endpoint is used to return the Application Status to Bilinfo.

Path: /applicationstatus/{reference}
Verb: PUT

Authorization scope:
https://{plugin implementer identifier}.bilinfo.net/api/applicationstatus/wri
te

Request
Table 6-2 describes the request specification for ApplicationStatus endpoint. Respectively Table 6-3 and Table
6-4 show the subtypes of that specification.

Table 6-2: ApplicationStatus endpoint request specification

Location Name Description

path reference The reference parameter supplied to the plugin. Refer to Section 5.2 for
further information

body object The body represent a mapping of the status for the different Brand & Product

ServiceTypes applied for in the Plugin.

46

Listing 6-1 shows an example of the status update for a bundled application that contains both loan and
insurance. Please note that loan and leasing have their own status values, as defined in Table 6-3, whereas the
status for all the other ServiceTypes are defined in Table 6-4

{
"loan": {
"providerName": "Finance company Loan",
"status": ,
"statusText": "Under processing"
b,
"insurance": {
"providerName": "Insurance company",
"status": ,
"statusText": "Sent"
}
}

Listing 6-1: Status update for bundled Application

Loan/Leasing ApplicationStatus
Table 6-3: ApplicationStatus identifier specification for loan or leasing

Value Description
0
1 Under processing
2 Effectuated
3 Approved
4 Denied
5 Cancelled
6 PreApproved

Generic ApplicationStatus
Table 6-4: Generic ApplicationStatus Identifier specification

Value Description
0 Not Sent
1 Sent
Response

Table 6-5 shows the possible responses provided by the ApplicationStatus endpoint.

Table 6-5: ApplicationStatus endpoint response specification

Status code Description

200 Successful response

47

400 When one of the required parameters is missing or invalid
404 When no offer can be found using the supplied reference parameter
500 Internal server error during request processing

Example

An example request for the ApplicationStatus endpoint with applied reference and Bearer token can be seen in
Listing 6-2.
PUT /{plugin implementer identifier}/api/v2/applicationstatus/abcl23 HTTP/1.1

Host: gw.bilinfo.net
Authorization: Bearer eyJ0eXA..PL4UPsfp

{

"loan": {
"providerName": "Finance company Loan",
"status": ,
"statusText": "Under processing"
}
}
Listing 6-2: ApplicationStatus endpoint request example
SalesContract

The SalesContract endpoint is used for acquiring the sales contract pdf file.

Path: /documents/salescontract/{reference}

Verb: GET

Authorization scope:

https://{plugin implementer identifier}.bilinfo.net/api/salescontract/read

Response
Table 6-6 shows the possible responses provided by the SalesContract endpoint.

Table 6-6: SalesContract endpoint response specification

Status code Description
200 Successful response containing the byte array representing the pdf
400 When one of the required parameters is invalid
401 When Authorization header is not specified or invalid
403 When the sales contract cannot be generated due to:

- the application is not marked as active
- the user has not yet applied for financing
- the application has been deleted

404 When no offer can be found using the supplied reference parameter, or the parameter is
not supplied at all
500 Internal server error during request processing

48

